IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22044-z.html
   My bibliography  Save this article

A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids

Author

Listed:
  • Jürgen F. H. Strassert

    (Uppsala University
    Leibniz Institute of Freshwater Ecology and Inland Fisheries)

  • Iker Irisarri

    (Uppsala University
    Museo Nacional de Ciencias Naturales (MNCN-CSIC)
    University of Göttingen, and Campus Institute Data Science (CIDAS))

  • Tom A. Williams

    (University of Bristol, Life Sciences Building)

  • Fabien Burki

    (Uppsala University
    Uppsala University)

Abstract

In modern oceans, eukaryotic phytoplankton is dominated by lineages with red algal-derived plastids such as diatoms, dinoflagellates, and coccolithophores. Despite the ecological importance of these groups and many others representing a huge diversity of forms and lifestyles, we still lack a comprehensive understanding of their evolution and how they obtained their plastids. New hypotheses have emerged to explain the acquisition of red algal-derived plastids by serial endosymbiosis, but the chronology of these putative independent plastid acquisitions remains untested. Here, we establish a timeframe for the origin of red algal-derived plastids under scenarios of serial endosymbiosis, using Bayesian molecular clock analyses applied on a phylogenomic dataset with broad sampling of eukaryote diversity. We find that the hypotheses of serial endosymbiosis are chronologically possible, as the stem lineages of all red plastid-containing groups overlap in time. This period in the Meso- and Neoproterozoic Eras set the stage for the later expansion to dominance of red algal-derived primary production in the contemporary oceans, which profoundly altered the global geochemical and ecological conditions of the Earth.

Suggested Citation

  • Jürgen F. H. Strassert & Iker Irisarri & Tom A. Williams & Fabien Burki, 2021. "A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22044-z
    DOI: 10.1038/s41467-021-22044-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22044-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22044-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tara A. Mahendrarajah & Edmund R. R. Moody & Dominik Schrempf & Lénárd L. Szánthó & Nina Dombrowski & Adrián A. Davín & Davide Pisani & Philip C. J. Donoghue & Gergely J. Szöllősi & Tom A. Williams & , 2023. "ATP synthase evolution on a cross-braced dated tree of life," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Yu-Zhong Zhang & Kang Li & Bing-Yue Qin & Jian-Ping Guo & Quan-Bao Zhang & Dian-Li Zhao & Xiu-Lan Chen & Jun Gao & Lu-Ning Liu & Long-Sheng Zhao, 2024. "Structure of cryptophyte photosystem II–light-harvesting antennae supercomplex," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Huan Zhang & Xiaofeng Xiong & Kangning Guo & Mengyuan Zheng & Tianjun Cao & Yuqing Yang & Jiaojiao Song & Jie Cen & Jiahuan Zhang & Yanyou Jiang & Shan Feng & Lijin Tian & Xiaobo Li, 2024. "A rapid aureochrome opto-switch enables diatom acclimation to dynamic light," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Zhiping Yang & Xiaoya Ma & Qiuping Wang & Xiaolin Tian & Jingyan Sun & Zhenhua Zhang & Shuhai Xiao & Olivier Clerck & Frederik Leliaert & Bojian Zhong, 2023. "Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Max E. Schön & Vasily V. Zlatogursky & Rohan P. Singh & Camille Poirier & Susanne Wilken & Varsha Mathur & Jürgen F. H. Strassert & Jarone Pinhassi & Alexandra Z. Worden & Patrick J. Keeling & Thijs J, 2021. "Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. T. Brunoir & C. Mulligan & A. Sistiaga & K. M. Vuu & P. M. Shih & S. S. O’Reilly & R. E. Summons & D. A. Gold, 2023. "Common origin of sterol biosynthesis points to a feeding strategy shift in Neoproterozoic animals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Long-Sheng Zhao & Ning Wang & Kang Li & Chun-Yang Li & Jian-Ping Guo & Fei-Yu He & Gui-Ming Liu & Xiu-Lan Chen & Jun Gao & Lu-Ning Liu & Yu-Zhong Zhang, 2024. "Architecture of symbiotic dinoflagellate photosystem I–light-harvesting supercomplex in Symbiodinium," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Bidhan Chandra De & Jason E. Cournoyer & Yang-le Gao & Catherine L. Wallace & Stanley Bram & Angad P. Mehta, 2024. "Photosynthetic directed endosymbiosis to investigate the role of bioenergetics in chloroplast function and evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Zheng Hou & Xiaoya Ma & Xuan Shi & Xi Li & Lingxiao Yang & Shuhai Xiao & Olivier Clerck & Frederik Leliaert & Bojian Zhong, 2022. "Phylotranscriptomic insights into a Mesoproterozoic–Neoproterozoic origin and early radiation of green seaweeds (Ulvophyceae)," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Sanea Sheikh & Cheng-Jie Fu & Matthew W. Brown & Sandra L. Baldauf, 2024. "The Acrasis kona genome and developmental transcriptomes reveal deep origins of eukaryotic multicellular pathways," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22044-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.