IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21895-w.html
   My bibliography  Save this article

Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias

Author

Listed:
  • Dávid Péter Kovács

    (University of Cambridge)

  • William McCorkindale

    (University of Cambridge)

  • Alpha A. Lee

    (University of Cambridge)

Abstract

Organic synthesis remains a major challenge in drug discovery. Although a plethora of machine learning models have been proposed as solutions in the literature, they suffer from being opaque black-boxes. It is neither clear if the models are making correct predictions because they inferred the salient chemistry, nor is it clear which training data they are relying on to reach a prediction. This opaqueness hinders both model developers and users. In this paper, we quantitatively interpret the Molecular Transformer, the state-of-the-art model for reaction prediction. We develop a framework to attribute predicted reaction outcomes both to specific parts of reactants, and to reactions in the training set. Furthermore, we demonstrate how to retrieve evidence for predicted reaction outcomes, and understand counterintuitive predictions by scrutinising the data. Additionally, we identify Clever Hans predictions where the correct prediction is reached for the wrong reason due to dataset bias. We present a new debiased dataset that provides a more realistic assessment of model performance, which we propose as the new standard benchmark for comparing reaction prediction models.

Suggested Citation

  • Dávid Péter Kovács & William McCorkindale & Alpha A. Lee, 2021. "Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21895-w
    DOI: 10.1038/s41467-021-21895-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21895-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21895-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Wang & Chao Pang & Yuzhe Wang & Junru Jin & Jingjie Zhang & Xiangxiang Zeng & Ran Su & Quan Zou & Leyi Wei, 2023. "Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Weihe Zhong & Ziduo Yang & Calvin Yu-Chian Chen, 2023. "Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Umit V. Ucak & Islambek Ashyrmamatov & Junsu Ko & Juyong Lee, 2022. "Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21895-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.