Author
Listed:
- Hongqiu Wei
(Northwest University)
- Ming Lei
(Northwestern Polytechnical University)
- Ping Zhang
(Northwest University)
- Jinsong Leng
(Harbin Institute of Technology)
- Zijian Zheng
(The Hong Kong Polytechnic University)
- You Yu
(Northwest University)
Abstract
3D-printing tough conductive hydrogels (TCHs) with complex structures is still a challenging task in related fields due to their inherent contrasting multinetworks, uncontrollable and slow polymerization of conductive components. Here we report an orthogonal photochemistry-assisted printing (OPAP) strategy to make 3D TCHs in one-pot via the combination of rational visible-light-chemistry design and reliable extrusion printing technique. This orthogonal chemistry is rapid, controllable, and simultaneously achieve the photopolymerization of EDOT and phenol-coupling reaction, leading to the construction of tough hydrogels in a short time (tgel ~30 s). As-prepared TCHs are tough, conductive, stretchable, and anti-freezing. This template-free 3D printing can process TCHs to arbitrary structures during the fabrication process. To further demonstrate the merits of this simple OPAP strategy and TCHs, 3D-printed TCHs hydrogel arrays and helical lines, as proofs-of-concept, are made to assemble high-performance pressure sensors and a temperature-responsive actuator. It is anticipated that this one-pot rapid, controllable OPAP strategy opens new horizons to tough hydrogels.
Suggested Citation
Hongqiu Wei & Ming Lei & Ping Zhang & Jinsong Leng & Zijian Zheng & You Yu, 2021.
"Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels,"
Nature Communications, Nature, vol. 12(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21869-y
DOI: 10.1038/s41467-021-21869-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21869-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.