IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21736-w.html
   My bibliography  Save this article

KRAS drives immune evasion in a genetic model of pancreatic cancer

Author

Listed:
  • Irene Ischenko

    (Stony Brook University)

  • Stephen D’Amico

    (Stony Brook University)

  • Manisha Rao

    (Stony Brook University)

  • Jinyu Li

    (Stony Brook University)

  • Michael J. Hayman

    (Stony Brook University)

  • Scott Powers

    (Stony Brook University)

  • Oleksi Petrenko

    (Stony Brook University)

  • Nancy C. Reich

    (Stony Brook University)

Abstract

Immune evasion is a hallmark of KRAS-driven cancers, but the underlying causes remain unresolved. Here, we use a mouse model of pancreatic ductal adenocarcinoma to inactivate KRAS by CRISPR-mediated genome editing. We demonstrate that at an advanced tumor stage, dependence on KRAS for tumor growth is reduced and is manifested in the suppression of antitumor immunity. KRAS-deficient cells retain the ability to form tumors in immunodeficient mice. However, they fail to evade the host immune system in syngeneic wild-type mice, triggering strong antitumor response. We uncover changes both in tumor cells and host immune cells attributable to oncogenic KRAS expression. We identify BRAF and MYC as key mediators of KRAS-driven tumor immune suppression and show that loss of BRAF effectively blocks tumor growth in mice. Applying our results to human PDAC we show that lowering KRAS activity is likewise associated with a more vigorous immune environment.

Suggested Citation

  • Irene Ischenko & Stephen D’Amico & Manisha Rao & Jinyu Li & Michael J. Hayman & Scott Powers & Oleksi Petrenko & Nancy C. Reich, 2021. "KRAS drives immune evasion in a genetic model of pancreatic cancer," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21736-w
    DOI: 10.1038/s41467-021-21736-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21736-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21736-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lena Wiedmann & Francesca De Angelis Rigotti & Nuria Vaquero-Siguero & Elisa Donato & Elisa Espinet & Iris Moll & Elisenda Alsina-Sanchis & Hanibal Bohnenberger & Elena Fernandez-Florido & Ronja Mülfa, 2023. "HAPLN1 potentiates peritoneal metastasis in pancreatic cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Xiaoyu Liu & Yaping Zhuang & Wei Huang & Zhuozhuo Wu & Yingjie Chen & Qungang Shan & Yuefang Zhang & Zhiyuan Wu & Xiaoyi Ding & Zilong Qiu & Wenguo Cui & Zhongmin Wang, 2023. "Interventional hydrogel microsphere vaccine as an immune amplifier for activated antitumour immunity after ablation therapy," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Manuel Rodrigues & Giulia Vanoni & Pierre Loap & Coraline Dubot & Eleonora Timperi & Mathieu Minsat & Louis Bazire & Catherine Durdux & Virginie Fourchotte & Enora Laas & Nicolas Pouget & Zahra Castel, 2023. "Nivolumab plus chemoradiotherapy in locally-advanced cervical cancer: the NICOL phase 1 trial," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21736-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.