IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21603-8.html
   My bibliography  Save this article

Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis

Author

Listed:
  • Sopon Butcha

    (University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP
    Vidyasirimedhi Institute of Science and Technology)

  • Sunpet Assavapanumat

    (Vidyasirimedhi Institute of Science and Technology)

  • Somlak Ittisanronnachai

    (Vidyasirimedhi Institute of Science and Technology)

  • Veronique Lapeyre

    (University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP)

  • Chularat Wattanakit

    (Vidyasirimedhi Institute of Science and Technology)

  • Alexander Kuhn

    (University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP
    Vidyasirimedhi Institute of Science and Technology)

Abstract

The design of efficient chiral catalysts is of crucial importance since it allows generating enantiomerically pure compounds. Tremendous efforts have been made over the past decades regarding the development of materials with enantioselective properties for various potential applications ranging from sensing to catalysis and separation. Recently, chiral features have been generated in mesoporous metals. Although these monometallic matrices show interesting enantioselectivity, they suffer from rather low stability, constituting an important roadblock for applications. Here, a straightforward strategy to circumvent this limitation by using nanostructured platinum-iridium alloys is presented. These materials can be successfully encoded with chiral information by co-electrodeposition from Pt and Ir salts in the simultaneous presence of a chiral compound and a lyotropic liquid crystal as asymmetric template and mesoporogen, respectively. The alloys enable a remarkable discrimination between chiral compounds and greatly improved enantioselectivity when used for asymmetric electrosynthesis (>95 %ee), combined with high electrochemical stability.

Suggested Citation

  • Sopon Butcha & Sunpet Assavapanumat & Somlak Ittisanronnachai & Veronique Lapeyre & Chularat Wattanakit & Alexander Kuhn, 2021. "Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21603-8
    DOI: 10.1038/s41467-021-21603-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21603-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21603-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Si Li & Xinxin Xu & Liguang Xu & Hengwei Lin & Hua Kuang & Chuanlai Xu, 2024. "Emerging trends in chiral inorganic nanomaterials for enantioselective catalysis," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Maryam Arabi & Abbas Ostovan & Yunqing Wang & Rongchao Mei & Longwen Fu & Jinhua Li & Xiaoyan Wang & Lingxin Chen, 2022. "Chiral molecular imprinting-based SERS detection strategy for absolute enantiomeric discrimination," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Yunqing Kang & Ovidiu Cretu & Jun Kikkawa & Koji Kimoto & Hiroki Nara & Asep Sugih Nugraha & Hiroki Kawamoto & Miharu Eguchi & Ting Liao & Ziqi Sun & Toru Asahi & Yusuke Yamauchi, 2023. "Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21603-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.