IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21560-2.html
   My bibliography  Save this article

Carbon prospecting in tropical forests for climate change mitigation

Author

Listed:
  • Lian Pin Koh

    (National University of Singapore)

  • Yiwen Zeng

    (National University of Singapore)

  • Tasya Vadya Sarira

    (National University of Singapore
    The University of Adelaide)

  • Kelly Siman

    (National University of Singapore)

Abstract

Carbon finance projects that protect tropical forests could support both nature conservation and climate change mitigation goals. Global demand for nature-based carbon credits is outpacing their supply, due partly to gaps in knowledge needed to inform and prioritize investment decisions. Here, we show that at current carbon market prices the protection of tropical forests can generate investible carbon amounting to 1.8 (±1.1) GtCO2e yr−1 globally. We further show that financially viable carbon projects could generate return-on-investment amounting to $46.0b y−1 in net present value (Asia-Pacific: $24.6b y−1; Americas: $19.1b y−1; Africa: $2.4b y−1). However, we also find that ~80% (1.24 billion ha) of forest carbon sites would be financially unviable for failing to break even over the project lifetime. From a conservation perspective, unless carbon prices increase in the future, it is imperative to implement other conservation interventions, in addition to carbon finance, to safeguard carbon stocks and biodiversity in vulnerable forests.

Suggested Citation

  • Lian Pin Koh & Yiwen Zeng & Tasya Vadya Sarira & Kelly Siman, 2021. "Carbon prospecting in tropical forests for climate change mitigation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21560-2
    DOI: 10.1038/s41467-021-21560-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21560-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21560-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Huirong & Luo, Na, 2024. "Climate uncertainty and green index volatility: Empirical insights from Chinese financial markets," Finance Research Letters, Elsevier, vol. 60(C).
    2. Xu, Xin & Huang, Shupei & Lucey, Brian M. & An, Haizhong, 2023. "The impacts of climate policy uncertainty on stock markets: Comparison between China and the US," International Review of Financial Analysis, Elsevier, vol. 88(C).
    3. Yiwen Zeng & Rebecca K. Runting & James E. M. Watson & Luis Roman Carrasco, 2022. "Telecoupled environmental impacts are an obstacle to meeting the sustainable development goals," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 76-82, February.
    4. Shuohua Liu & Xiao Zhang & Yifan Zhou & Shunbo Yao, 2021. "Spatiotemporal Evolution and Influencing Factors of Carbon Sink Dynamics at County Scale: A Case Study of Shaanxi Province, China," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    5. Tasya Vadya Sarira & Yiwen Zeng & Rachel Neugarten & Rebecca Chaplin-Kramer & Lian Pin Koh, 2022. "Co-benefits of forest carbon projects in Southeast Asia," Nature Sustainability, Nature, vol. 5(5), pages 393-396, May.
    6. Hao, Xinyu & Sun, Wen & Zhang, Xiaoling, 2023. "How does a scarcer allowance remake the carbon market? An evolutionary game analysis from the perspective of stakeholders," Energy, Elsevier, vol. 280(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21560-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.