IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21537-1.html
   My bibliography  Save this article

A neural m6A/Ythdf pathway is required for learning and memory in Drosophila

Author

Listed:
  • Lijuan Kan

    (Sloan-Kettering Institute)

  • Stanislav Ott

    (Duke-NUS Medical School)

  • Brian Joseph

    (Sloan-Kettering Institute
    Memorial Sloan Kettering Cancer Center)

  • Eun Sil Park

    (Sloan-Kettering Institute)

  • Wei Dai

    (Princeton University)

  • Ralph E. Kleiner

    (Princeton University)

  • Adam Claridge-Chang

    (Duke-NUS Medical School
    A*STAR
    National University of Singapore)

  • Eric C. Lai

    (Sloan-Kettering Institute)

Abstract

Epitranscriptomic modifications can impact behavior. Here, we used Drosophila melanogaster to study N6-methyladenosine (m6A), the most abundant modification of mRNA. Proteomic and functional analyses confirm its nuclear (Ythdc1) and cytoplasmic (Ythdf) YTH domain proteins as major m6A binders. Assays of short term memory in m6A mutants reveal neural-autonomous requirements of m6A writers working via Ythdf, but not Ythdc1. Furthermore, m6A/Ythdf operate specifically via the mushroom body, the center for associative learning. We map m6A from wild-type and Mettl3 mutant heads, allowing robust discrimination of Mettl3-dependent m6A sites that are highly enriched in 5’ UTRs. Genomic analyses indicate that Drosophila m6A is preferentially deposited on genes with low translational efficiency and that m6A does not affect RNA stability. Nevertheless, functional tests indicate a role for m6A/Ythdf in translational activation. Altogether, our molecular genetic analyses and tissue-specific m6A maps reveal selective behavioral and regulatory defects for the Drosophila Mettl3/Ythdf pathway.

Suggested Citation

  • Lijuan Kan & Stanislav Ott & Brian Joseph & Eun Sil Park & Wei Dai & Ralph E. Kleiner & Adam Claridge-Chang & Eric C. Lai, 2021. "A neural m6A/Ythdf pathway is required for learning and memory in Drosophila," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21537-1
    DOI: 10.1038/s41467-021-21537-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21537-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21537-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandra E. Perlegos & Emily J. Shields & Hui Shen & Kathy Fange Liu & Nancy M. Bonini, 2022. "Mettl3-dependent m6A modification attenuates the brain stress response in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Stanislav Ott & Sangyu Xu & Nicole Lee & Ivan Hong & Jonathan Anns & Danesha Devini Suresh & Zhiyi Zhang & Xianyuan Zhang & Raihanah Harion & Weiying Ye & Vaishnavi Chandramouli & Suresh Jesuthasan & , 2024. "Kalium channelrhodopsins effectively inhibit neurons," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21537-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.