IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21502-y.html
   My bibliography  Save this article

Power sector investment implications of climate impacts on renewable resources in Latin America and the Caribbean

Author

Listed:
  • Silvia R. Santos da Silva

    (University of Maryland
    Pacific Northwest National Laboratory)

  • Mohamad I. Hejazi

    (Pacific Northwest National Laboratory)

  • Gokul Iyer

    (Pacific Northwest National Laboratory)

  • Thomas B. Wild

    (Pacific Northwest National Laboratory
    Earth System Science Interdisciplinary Center)

  • Matthew Binsted

    (Pacific Northwest National Laboratory)

  • Fernando Miralles-Wilhelm

    (University of Maryland
    Pacific Northwest National Laboratory
    Earth System Science Interdisciplinary Center)

  • Pralit Patel

    (Pacific Northwest National Laboratory)

  • Abigail C. Snyder

    (Pacific Northwest National Laboratory)

  • Chris R. Vernon

    (Pacific Northwest National Laboratory)

Abstract

Climate change mitigation will require substantial investments in renewables. In addition, climate change will affect future renewable supply and hence, power sector investment requirements. We study the implications of climate impacts on renewables for power sector investments under deep decarbonization using a global integrated assessment model. We focus on Latin American and Caribbean, an under-studied region but of great interest due to its strong role in international climate mitigation and vulnerability to climate change. We find that accounting for climate impacts on renewables results in significant additional investments ($12–114 billion by 2100 across Latin American countries) for a region with weak financial infrastructure. We also demonstrate that accounting for climate impacts only on hydropower—a primary focus of previous studies—significantly underestimates cumulative investments, particularly in scenarios with high intermittent renewable deployment. Our study underscores the importance of comprehensive analyses of climate impacts on renewables for improved energy planning.

Suggested Citation

  • Silvia R. Santos da Silva & Mohamad I. Hejazi & Gokul Iyer & Thomas B. Wild & Matthew Binsted & Fernando Miralles-Wilhelm & Pralit Patel & Abigail C. Snyder & Chris R. Vernon, 2021. "Power sector investment implications of climate impacts on renewable resources in Latin America and the Caribbean," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21502-y
    DOI: 10.1038/s41467-021-21502-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21502-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21502-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    2. Matamala, Yolanda & Feijoo, Felipe, 2021. "A two-stage stochastic Stackelberg model for microgrid operation with chance constraints for renewable energy generation uncertainty," Applied Energy, Elsevier, vol. 303(C).
    3. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    4. Cui, Qiang & Jia, Zike, 2023. "Low-efficient aircraft affecting future aviation carbon transfer among South American countries," Energy, Elsevier, vol. 282(C).
    5. Licandeo, Francisca & Flores, Francisco & Feijoo, Felipe, 2023. "Assessing the impacts of economy-wide emissions policies in the water, energy, and land systems considering water scarcity scenarios," Applied Energy, Elsevier, vol. 342(C).
    6. Hussain, Syed Asad & Razi, Faran & Hewage, Kasun & Sadiq, Rehan, 2023. "The perspective of energy poverty and 1st energy crisis of green transition," Energy, Elsevier, vol. 275(C).
    7. Ding, Qian & Huang, Jianbai & Chen, Jinyu & Luo, Xianfeng, 2024. "Climate warming, renewable energy consumption and rare earth market: Evidence from the United States," Energy, Elsevier, vol. 290(C).
    8. Matamala, Yolanda & Flores, Francisco & Arriet, Andrea & Khan, Zarrar & Feijoo, Felipe, 2023. "Probabilistic feasibility assessment of sequestration reliance for climate targets," Energy, Elsevier, vol. 272(C).
    9. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    10. Guangsheng Pan & Qinran Hu & Wei Gu & Shixing Ding & Haifeng Qiu & Yuping Lu, 2021. "Assessment of plum rain’s impact on power system emissions in Yangtze-Huaihe River basin of China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Perera, A.T.D. & Khayatian, F. & Eggimann, S. & Orehounig, K. & Halgamuge, Saman, 2022. "Quantifying the climate and human-system-driven uncertainties in energy planning by using GANs," Applied Energy, Elsevier, vol. 328(C).
    12. Azer Dilanchiev & Bobur Urinov & Sugra Humbatova & Gunay Panahova, 2024. "Catalyzing climate change mitigation: investigating the influence of renewable energy investments across BRICS," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-32, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21502-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.