IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21489-6.html
   My bibliography  Save this article

Enantioselective construction of six- and seven-membered triorgano-substituted silicon-stereogenic heterocycles

Author

Listed:
  • Shuyou Chen

    (Southern University of Science and Technology)

  • Delong Mu

    (Southern University of Science and Technology)

  • Pei-Lin Mai

    (Southern University of Science and Technology)

  • Jie Ke

    (Southern University of Science and Technology)

  • Yingzi Li

    (Southern University of Science and Technology)

  • Chuan He

    (Southern University of Science and Technology)

Abstract

The exploitation of chirality at silicon in asymmetric catalysis is one of the most intriguing and challenging tasks in synthetic chemistry. In particular, construction of enantioenriched mediem-sized silicon-stereogenic heterocycles is highly attractive, given the increasing demand for the synthesis of novel functional-materials-oriented silicon-bridged compounds. Here, we report a rhodium-catalyzed enantioselective construction of six- and seven-membered triorgano-substituted silicon-stereogenic heterocycles. This process undergoes a direct dehydrogenative C−H silylation, giving access to a wide range of triorgano-substituted silicon-stereogenic heterocycles in good to excellent yields and enantioselectivities, that significantly enlarge the chemical space of the silicon-centered chiral molecules. Further elaboration of the chiral monohydrosilane product delivers various corresponding tetraorgano-substituted silicon-stereogenic heterocycles without the loss of enantiopurity. These silicon-bridged heterocycles exhibit bright blue fluorescence, which would have potential application prospects in organic optoelectronic materials.

Suggested Citation

  • Shuyou Chen & Delong Mu & Pei-Lin Mai & Jie Ke & Yingzi Li & Chuan He, 2021. "Enantioselective construction of six- and seven-membered triorgano-substituted silicon-stereogenic heterocycles," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21489-6
    DOI: 10.1038/s41467-021-21489-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21489-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21489-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xihong Wang & Chi Feng & Julong Jiang & Satoshi Maeda & Koji Kubota & Hajime Ito, 2023. "Stereospecific synthesis of silicon-stereogenic optically active silylboranes and general synthesis of chiral silyl Anions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Kun An & Wenpeng Ma & Li-Chuan Liu & Tao He & Guiyu Guan & Qing-Wei Zhang & Wei He, 2022. "Rhodium hydride enabled enantioselective intermolecular C–H silylation to access acyclic stereogenic Si–H," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jinwei Sun & Yongze Zhou & Rui Gu & Xin Li & Ao Liu & Xuan Zhang, 2022. "Regioselective Ni-Catalyzed reductive alkylsilylation of acrylonitrile with unactivated alkyl bromides and chlorosilanes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21489-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.