IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21292-3.html
   My bibliography  Save this article

Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness

Author

Listed:
  • Qingshun Dong

    (Dalian University of Technology
    School of Engineering, Brown University)

  • Chao Zhu

    (Southeast University
    Nanyang Technological University)

  • Min Chen

    (School of Engineering, Brown University)

  • Chen Jiang

    (Dalian University of Technology)

  • Jingya Guo

    (Dalian University of Technology)

  • Yulin Feng

    (Dalian University of Technology)

  • Zhenghong Dai

    (School of Engineering, Brown University)

  • Srinivas K. Yadavalli

    (School of Engineering, Brown University)

  • Mingyu Hu

    (School of Engineering, Brown University)

  • Xun Cao

    (Nanyang Technological University)

  • Yuqian Li

    (Analysis and Test Center, Beijing University of Chemical Technology)

  • Yizhong Huang

    (Nanyang Technological University)

  • Zheng Liu

    (Nanyang Technological University)

  • Yantao Shi

    (Dalian University of Technology)

  • Liduo Wang

    (Tsinghua University)

  • Nitin P. Padture

    (School of Engineering, Brown University)

  • Yuanyuan Zhou

    (School of Engineering, Brown University
    Hong Kong Baptist University)

Abstract

The perovskite solar cell has emerged rapidly in the field of photovoltaics as it combines the merits of low cost, high efficiency, and excellent mechanical flexibility for versatile applications. However, there are significant concerns regarding its operational stability and mechanical robustness. Most of the previously reported approaches to address these concerns entail separate engineering of perovskite and charge-transporting layers. Herein we present a holistic design of perovskite and charge-transporting layers by synthesizing an interpenetrating perovskite/electron-transporting-layer interface. This interface is reaction-formed between a tin dioxide layer containing excess organic halide and a perovskite layer containing excess lead halide. Perovskite solar cells with such interfaces deliver efficiencies up to 22.2% and 20.1% for rigid and flexible versions, respectively. Long-term (1000 h) operational stability is demonstrated and the flexible devices show high endurance against mechanical-bending (2500 cycles) fatigue. Mechanistic insights into the relationship between the interpenetrating interface structure and performance enhancement are provided based on comprehensive, advanced, microscopic characterizations. This study highlights interface integrity as an important factor for designing efficient, operationally-stable, and mechanically-robust solar cells.

Suggested Citation

  • Qingshun Dong & Chao Zhu & Min Chen & Chen Jiang & Jingya Guo & Yulin Feng & Zhenghong Dai & Srinivas K. Yadavalli & Mingyu Hu & Xun Cao & Yuqian Li & Yizhong Huang & Zheng Liu & Yantao Shi & Liduo Wa, 2021. "Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21292-3
    DOI: 10.1038/s41467-021-21292-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21292-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21292-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian Tian & Meifang Yang & Yuxuan Fang & Shuo Zhang & Yuxin Chen & Lianzhou Wang & Wu-Qiang Wu, 2023. "Large-area waterproof and durable perovskite luminescent textiles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Zengqi Huang & Lin Li & Tingqing Wu & Tangyue Xue & Wei Sun & Qi Pan & Huadong Wang & Hongfei Xie & Jimei Chi & Teng Han & Xiaotian Hu & Meng Su & Yiwang Chen & Yanlin Song, 2023. "Wearable perovskite solar cells by aligned liquid crystal elastomers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Zhihao Li & Chunmei Jia & Zhi Wan & Jiayi Xue & Junchao Cao & Meng Zhang & Can Li & Jianghua Shen & Chao Zhang & Zhen Li, 2023. "Hyperbranched polymer functionalized flexible perovskite solar cells with mechanical robustness and reduced lead leakage," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21292-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.