IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21278-1.html
   My bibliography  Save this article

C. elegans germ granules require both assembly and localized regulators for mRNA repression

Author

Listed:
  • Scott Takeo Aoki

    (Indiana University
    University of Wisconsin-Madison)

  • Tina R. Lynch

    (University of Wisconsin-Madison)

  • Sarah L. Crittenden

    (University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Craig A. Bingman

    (University of Wisconsin-Madison)

  • Marvin Wickens

    (University of Wisconsin-Madison)

  • Judith Kimble

    (University of Wisconsin-Madison
    University of Wisconsin-Madison)

Abstract

Cytoplasmic RNA–protein (RNP) granules have diverse biophysical properties, from liquid to solid, and play enigmatic roles in RNA metabolism. Nematode P granules are paradigmatic liquid droplet granules and central to germ cell development. Here we analyze a key P granule scaffolding protein, PGL-1, to investigate the functional relationship between P granule assembly and function. Using a protein–RNA tethering assay, we find that reporter mRNA expression is repressed when recruited to PGL-1. We determine the crystal structure of the PGL-1 N-terminal region to 1.5 Å, discover its dimerization, and identify key residues at the dimer interface. Mutations of those interface residues prevent P granule assembly in vivo, de-repress PGL-1 tethered mRNA, and reduce fertility. Therefore, PGL-1 dimerization lies at the heart of both P granule assembly and function. Finally, we identify the P granule-associated Argonaute WAGO-1 as crucial for repression of PGL-1 tethered mRNA. We conclude that P granule function requires both assembly and localized regulators.

Suggested Citation

  • Scott Takeo Aoki & Tina R. Lynch & Sarah L. Crittenden & Craig A. Bingman & Marvin Wickens & Judith Kimble, 2021. "C. elegans germ granules require both assembly and localized regulators for mRNA repression," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21278-1
    DOI: 10.1038/s41467-021-21278-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21278-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21278-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjun Chen & Jordan S. Brown & Tao He & Wei-Sheng Wu & Shikui Tu & Zhiping Weng & Donglei Zhang & Heng-Chi Lee, 2022. "GLH/VASA helicases promote germ granule formation to ensure the fidelity of piRNA-mediated transcriptome surveillance," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21278-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.