IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21270-9.html
   My bibliography  Save this article

Pd-catalyzed formal Mizoroki–Heck coupling of unactivated alkyl chlorides

Author

Listed:
  • Geun Seok Lee

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Daeun Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Soon Hyeok Hong

    (Korea Advanced Institute of Science and Technology (KAIST))

Abstract

The use of alkyl chlorides in Pd-catalyzed Mizoroki–Heck coupling reactions remains an unsolved problem despite their significant potential for synthetic utility and applicability. The combination of the high thermodynamic barrier of alkyl chloride activation and kinetic propensity of alkylpalladium complexes to undergo undesired β-hydride elimination provides significant challenges. Herein, a variety of alkyl chlorides, even tertiary chlorides, are shown to efficiently participate in Mizoroki–Heck cross-coupling reactions with excellent functional group compatibility under mild reaction conditions via photoinduced Pd catalysis. The reaction is applied to late-stage functionalizations of diverse biologically significant scaffolds and iterative double Mizoroki–Heck annulations, affording high molecular complexity in a single step. Notably, studies on the kinetic isotope effects in combination with density functional theory (DFT)-computations completely exclude the involvement of a previously proposed β-hydride elimination in the catalytic cycle, revealing that the chlorine atom transfer process is the key catalytic turnover step. This distinctive single-electron transfer mediated reaction pathway resolves a longstanding challenge in traditional two-electron based Pd-catalyzed Mizoroki–Heck cross-coupling with alkyl electrophiles, wherein the β-hydride elimination is involved in the formation of both the desired product and undesired by-products.

Suggested Citation

  • Geun Seok Lee & Daeun Kim & Soon Hyeok Hong, 2021. "Pd-catalyzed formal Mizoroki–Heck coupling of unactivated alkyl chlorides," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21270-9
    DOI: 10.1038/s41467-021-21270-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21270-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21270-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takahito Kuribara & Masaya Nakajima & Tetsuhiro Nemoto, 2022. "A visible-light activated secondary phosphine oxide ligand enabling Pd-catalyzed radical cross-couplings," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yongqiang Zhang & Dongmin Fu & Ziyang Chen & Rongqi Cui & Wenlong He & Hongyao Wang & Jiajin Chen & Yufei Chen & Shi-Jun Li & Yu Lan & Chunying Duan & Yunhe Jin, 2024. "Bifunctional iron-catalyzed alkyne Z-selective hydroalkylation and tandem Z-E inversion via radical molding and flipping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21270-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.