IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21153-z.html
   My bibliography  Save this article

Colloidal CdSe nanocrystals are inherently defective

Author

Listed:
  • Tamar Goldzak

    (Massachusetts Institute of Technology
    Columbia University)

  • Alexandra R. McIsaac

    (Massachusetts Institute of Technology)

  • Troy Van Voorhis

    (Massachusetts Institute of Technology)

Abstract

Colloidal CdSe nanocrystals (NCs) have shown promise in applications ranging from LED displays to medical imaging. Their unique photophysics depend sensitively on the presence or absence of surface defects. Using simulations, we show that CdSe NCs are inherently defective; even for stoichiometric NCs with perfect ligand passivation and no vacancies or defects, we still observe that the low energy spectrum is dominated by dark, surface-associated excitations, which are more numerous in larger NCs. Surface structure analysis shows that the majority of these states involve holes that are localized on two-coordinate Se atoms. As chalcogenide atoms are not passivated by any Lewis base ligand, varying the ligand should not dramatically change the number of dark states, which we confirm by simulating three passivation schemes. Our results have significant implications for understanding CdSe NC photophysics, and suggest that photochemistry and short-range photoinduced charge transfer should be much more facile than previously anticipated.

Suggested Citation

  • Tamar Goldzak & Alexandra R. McIsaac & Troy Van Voorhis, 2021. "Colloidal CdSe nanocrystals are inherently defective," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21153-z
    DOI: 10.1038/s41467-021-21153-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21153-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21153-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Kick & Ezra Alexander & Anton Beiersdorfer & Troy Voorhis, 2024. "Super-resolution techniques to simulate electronic spectra of large molecular systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Xingtong Chen & Xiongfeng Lin & Likuan Zhou & Xiaojuan Sun & Rui Li & Mengyu Chen & Yixing Yang & Wenjun Hou & Longjia Wu & Weiran Cao & Xin Zhang & Xiaolin Yan & Song Chen, 2023. "Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21153-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.