IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21151-1.html
   My bibliography  Save this article

Frontotemporal coordination predicts working memory performance and its local neural signatures

Author

Listed:
  • Ehsan Rezayat

    (School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM))

  • Mohammad-Reza A. Dehaqani

    (School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM)
    University of Tehran)

  • Kelsey Clark

    (University of Utah)

  • Zahra Bahmani

    (Tarbiat Modares University)

  • Tirin Moore

    (Department of Neurobiology Stanford University
    Stanford University)

  • Behrad Noudoost

    (University of Utah)

Abstract

Neurons in some sensory areas reflect the content of working memory (WM) in their spiking activity. However, this spiking activity is seldom related to behavioral performance. We studied the responses of inferotemporal (IT) neurons, which exhibit object-selective activity, along with Frontal Eye Field (FEF) neurons, which exhibit spatially selective activity, during the delay period of an object WM task. Unlike the spiking activity and local field potentials (LFPs) within these areas, which were poor predictors of behavioral performance, the phase-locking of IT spikes and LFPs with the beta band of FEF LFPs robustly predicted successful WM maintenance. In addition, IT neurons exhibited greater object-selective persistent activity when their spikes were locked to the phase of FEF LFPs. These results reveal that the coordination between prefrontal and temporal cortex predicts the successful maintenance of visual information during WM.

Suggested Citation

  • Ehsan Rezayat & Mohammad-Reza A. Dehaqani & Kelsey Clark & Zahra Bahmani & Tirin Moore & Behrad Noudoost, 2021. "Frontotemporal coordination predicts working memory performance and its local neural signatures," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21151-1
    DOI: 10.1038/s41467-021-21151-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21151-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21151-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johan Liljefors & Rita Almeida & Gustaf Rane & Johan N. Lundström & Pawel Herman & Mikael Lundqvist, 2024. "Distinct functions for beta and alpha bursts in gating of human working memory," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Toshiyuki Hirabayashi & Yuji Nagai & Yuki Hori & Yukiko Hori & Kei Oyama & Koki Mimura & Naohisa Miyakawa & Haruhiko Iwaoki & Ken-ichi Inoue & Tetsuya Suhara & Masahiko Takada & Makoto Higuchi & Takaf, 2024. "Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21151-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.