IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21108-4.html
   My bibliography  Save this article

Ultra-fast charging in aluminum-ion batteries: electric double layers on active anode

Author

Listed:
  • Xuejing Shen

    (Dalian University of Technology
    University of Nebraska)

  • Tao Sun

    (Dalian University of Technology
    University of Nebraska)

  • Lei Yang

    (Dalian University of Technology
    University of Nebraska)

  • Alexey Krasnoslobodtsev

    (University of Nebraska
    University of Nebraska)

  • Renat Sabirianov

    (University of Nebraska
    University of Nebraska)

  • Michael Sealy

    (University of Nebraska
    University of Nebraska)

  • Wai-Ning Mei

    (University of Nebraska
    University of Nebraska)

  • Zhanjun Wu

    (Dalian University of Technology)

  • Li Tan

    (University of Nebraska
    University of Nebraska)

Abstract

With the rapid iteration of portable electronics and electric vehicles, developing high-capacity batteries with ultra-fast charging capability has become a holy grail. Here we report rechargeable aluminum-ion batteries capable of reaching a high specific capacity of 200 mAh g−1. When liquid metal is further used to lower the energy barrier from the anode, fastest charging rate of 104 C (duration of 0.35 s to reach a full capacity) and 500% more specific capacity under high-rate conditions are achieved. Phase boundaries from the active anode are believed to encourage a high-flux charge transfer through the electric double layers. As a result, cationic layers inside the electric double layers responded with a swift change in molecular conformation, but anionic layers adopted a polymer-like configuration to facilitate the change in composition.

Suggested Citation

  • Xuejing Shen & Tao Sun & Lei Yang & Alexey Krasnoslobodtsev & Renat Sabirianov & Michael Sealy & Wai-Ning Mei & Zhanjun Wu & Li Tan, 2021. "Ultra-fast charging in aluminum-ion batteries: electric double layers on active anode," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21108-4
    DOI: 10.1038/s41467-021-21108-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21108-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21108-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songshan Bi & Shuai Wang & Fang Yue & Zhiwei Tie & Zhiqiang Niu, 2021. "A rechargeable aqueous manganese-ion battery based on intercalation chemistry," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Jiashen Meng & Xuhui Yao & Xufeng Hong & Lujun Zhu & Zhitong Xiao & Yongfeng Jia & Fang Liu & Huimin Song & Yunlong Zhao & Quanquan Pang, 2023. "A solution-to-solid conversion chemistry enables ultrafast-charging and long-lived molten salt aluminium batteries," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21108-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.