IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21102-w.html
   My bibliography  Save this article

Cross-linking mass spectrometry uncovers protein interactions and functional assemblies in synaptic vesicle membranes

Author

Listed:
  • Sabine Wittig

    (Martin Luther University Halle-Wittenberg)

  • Marcelo Ganzella

    (Max Planck Institute for Biophysical Chemistry)

  • Marie Barth

    (Martin Luther University Halle-Wittenberg)

  • Susann Kostmann

    (Martin Luther University Halle-Wittenberg)

  • Dietmar Riedel

    (Max Planck Institute for Biophysical Chemistry)

  • Ángel Pérez-Lara

    (Max Planck Institute for Biophysical Chemistry
    University of Granada)

  • Reinhard Jahn

    (Max Planck Institute for Biophysical Chemistry)

  • Carla Schmidt

    (Martin Luther University Halle-Wittenberg)

Abstract

Synaptic vesicles are storage organelles for neurotransmitters. They pass through a trafficking cycle and fuse with the pre-synaptic membrane when an action potential arrives at the nerve terminal. While molecular components and biophysical parameters of synaptic vesicles have been determined, our knowledge on the protein interactions in their membranes is limited. Here, we apply cross-linking mass spectrometry to study interactions of synaptic vesicle proteins in an unbiased approach without the need for specific antibodies or detergent-solubilisation. Our large-scale analysis delivers a protein network of vesicle sub-populations and functional assemblies including an active and an inactive conformation of the vesicular ATPase complex as well as non-conventional arrangements of the luminal loops of SV2A, Synaptophysin and structurally related proteins. Based on this network, we specifically target Synaptobrevin-2, which connects with many proteins, in different approaches. Our results allow distinction of interactions caused by ‘crowding’ in the vesicle membrane from stable interaction modules.

Suggested Citation

  • Sabine Wittig & Marcelo Ganzella & Marie Barth & Susann Kostmann & Dietmar Riedel & Ángel Pérez-Lara & Reinhard Jahn & Carla Schmidt, 2021. "Cross-linking mass spectrometry uncovers protein interactions and functional assemblies in synaptic vesicle membranes," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21102-w
    DOI: 10.1038/s41467-021-21102-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21102-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21102-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Hoffmann & Jakob Rentsch & Taka A. Tsunoyama & Akshita Chhabra & Gerard Aguilar Perez & Rajdeep Chowdhury & Franziska Trnka & Aleksandr A. Korobeinikov & Ali H. Shaib & Marcelo Ganzella & Gr, 2023. "Synapsin condensation controls synaptic vesicle sequestering and dynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21102-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.