IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21060-3.html
   My bibliography  Save this article

Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors

Author

Listed:
  • Jerzy Osipiuk

    (University of Chicago
    Argonne National Laboratory)

  • Saara-Anne Azizi

    (University of Chicago)

  • Steve Dvorkin

    (University of Chicago)

  • Michael Endres

    (University of Chicago
    Argonne National Laboratory)

  • Robert Jedrzejczak

    (University of Chicago
    Argonne National Laboratory)

  • Krysten A. Jones

    (University of Chicago)

  • Soowon Kang

    (University of Chicago)

  • Rahul S. Kathayat

    (University of Chicago)

  • Youngchang Kim

    (University of Chicago
    Argonne National Laboratory)

  • Vladislav G. Lisnyak

    (University of Chicago)

  • Samantha L. Maki

    (University of Chicago)

  • Vlad Nicolaescu

    (University of Chicago)

  • Cooper A. Taylor

    (University of Chicago)

  • Christine Tesar

    (University of Chicago
    Argonne National Laboratory)

  • Yu-An Zhang

    (University of Chicago)

  • Zhiyao Zhou

    (University of Chicago)

  • Glenn Randall

    (University of Chicago)

  • Karolina Michalska

    (University of Chicago
    Argonne National Laboratory)

  • Scott A. Snyder

    (University of Chicago)

  • Bryan C. Dickinson

    (University of Chicago)

  • Andrzej Joachimiak

    (University of Chicago
    Argonne National Laboratory
    University of Chicago)

Abstract

The pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to expand. Papain-like protease (PLpro) is one of two SARS-CoV-2 proteases potentially targetable with antivirals. PLpro is an attractive target because it plays an essential role in cleavage and maturation of viral polyproteins, assembly of the replicase-transcriptase complex, and disruption of host responses. We report a substantive body of structural, biochemical, and virus replication studies that identify several inhibitors of the SARS-CoV-2 enzyme. We determined the high resolution structure of wild-type PLpro, the active site C111S mutant, and their complexes with inhibitors. This collection of structures details inhibitors recognition and interactions providing fundamental molecular and mechanistic insight into PLpro. All compounds inhibit the peptidase activity of PLpro in vitro, some block SARS-CoV-2 replication in cell culture assays. These findings will accelerate structure-based drug design efforts targeting PLpro to identify high-affinity inhibitors of clinical value.

Suggested Citation

  • Jerzy Osipiuk & Saara-Anne Azizi & Steve Dvorkin & Michael Endres & Robert Jedrzejczak & Krysten A. Jones & Soowon Kang & Rahul S. Kathayat & Youngchang Kim & Vladislav G. Lisnyak & Samantha L. Maki &, 2021. "Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21060-3
    DOI: 10.1038/s41467-021-21060-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21060-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21060-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurbella Sofiana Altu & Cahyo Budiman & Rafida Razali & Ruzaidi Azli Mohd Mokhtar & Khairul Azfar Kamaruzaman, 2022. "Technical Data of In Silico Analysis of the Interaction of Dietary Flavonoid Compounds against Spike-Glycoprotein and Proteases of SARS-CoV-2," Data, MDPI, vol. 7(11), pages 1-24, October.
    2. Yongzhi Lu & Qi Yang & Ting Ran & Guihua Zhang & Wenqi Li & Peiqi Zhou & Jielin Tang & Minxian Dai & Jinpeng Zhong & Hua Chen & Pan He & Anqi Zhou & Bao Xue & Jiayi Chen & Jiyun Zhang & Sidi Yang & Ku, 2024. "Discovery of orally bioavailable SARS-CoV-2 papain-like protease inhibitor as a potential treatment for COVID-19," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Brian C. Sanders & Suman Pokhrel & Audrey D. Labbe & Irimpan I. Mathews & Connor J. Cooper & Russell B. Davidson & Gwyndalyn Phillips & Kevin L. Weiss & Qiu Zhang & Hugh O’Neill & Manat Kaur & Jurgen , 2023. "Potent and selective covalent inhibition of the papain-like protease from SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Gabriela Dias Noske & Yun Song & Rafaela Sachetto Fernandes & Rod Chalk & Haitem Elmassoudi & Lizbé Koekemoer & C. David Owen & Tarick J. El-Baba & Carol V. Robinson & Glaucius Oliva & Andre Schutzer , 2023. "An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Pawel M. Wydorski & Jerzy Osipiuk & Benjamin T. Lanham & Christine Tesar & Michael Endres & Elizabeth Engle & Robert Jedrzejczak & Vishruth Mullapudi & Karolina Michalska & Krzysztof Fidelis & David F, 2023. "Dual domain recognition determines SARS-CoV-2 PLpro selectivity for human ISG15 and K48-linked di-ubiquitin," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21060-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.