Author
Listed:
- Inah Hwang
(Weil Cornell Medicine)
- Hiroki Uchida
(Weil Cornell Medicine)
- Ziwei Dai
(Duke University School of Medicine)
- Fei Li
(Southwest Hospital)
- Teresa Sanchez
(Weil Cornell Medicine
Weil Cornell Medicine)
- Jason W. Locasale
(Duke University School of Medicine)
- Lewis C. Cantley
(Weil Cornell Medicine
Weill Cornell Medicine and New York Presbyterian Hospital)
- Hongwu Zheng
(Weil Cornell Medicine)
- Jihye Paik
(Weil Cornell Medicine
Weill Cornell Medicine and New York Presbyterian Hospital)
Abstract
Neural stem/progenitor cells (NSPCs) persist over the lifespan while encountering constant challenges from age or injury related brain environmental changes like elevated oxidative stress. But how oxidative stress regulates NSPC and its neurogenic differentiation is less clear. Here we report that acutely elevated cellular oxidative stress in NSPCs modulates neurogenic differentiation through induction of Forkhead box protein O3 (FOXO3)-mediated cGAS/STING and type I interferon (IFN-I) responses. We show that oxidative stress activates FOXO3 and its transcriptional target glycine-N-methyltransferase (GNMT) whose upregulation triggers depletion of s-adenosylmethionine (SAM), a key co-substrate involved in methyl group transfer reactions. Mechanistically, we demonstrate that reduced intracellular SAM availability disrupts carboxymethylation and maturation of nuclear lamin, which induce cytosolic release of chromatin fragments and subsequent activation of the cGAS/STING-IFN-I cascade to suppress neurogenic differentiation. Together, our findings suggest the FOXO3-GNMT/SAM-lamin-cGAS/STING-IFN-I signaling cascade as a critical stress response program that regulates long-term regenerative potential.
Suggested Citation
Inah Hwang & Hiroki Uchida & Ziwei Dai & Fei Li & Teresa Sanchez & Jason W. Locasale & Lewis C. Cantley & Hongwu Zheng & Jihye Paik, 2021.
"Cellular stress signaling activates type-I IFN response through FOXO3-regulated lamin posttranslational modification,"
Nature Communications, Nature, vol. 12(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20839-0
DOI: 10.1038/s41467-020-20839-0
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20839-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.