IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20818-5.html
   My bibliography  Save this article

The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks

Author

Listed:
  • Ann-Marie K. Shorrocks

    (University of Oxford, John Radcliffe Hospital
    Department of Oncology, University of Oxford)

  • Samuel E. Jones

    (University of Oxford, John Radcliffe Hospital
    Department of Oncology, University of Oxford)

  • Kaima Tsukada

    (University of Oxford, John Radcliffe Hospital
    Department of Oncology, University of Oxford
    School of Environment and Society, Tokyo Institute of Technology)

  • Carl A. Morrow

    (University of Oxford, John Radcliffe Hospital
    Department of Oncology, University of Oxford)

  • Zoulikha Belblidia

    (University of Oxford, John Radcliffe Hospital
    Department of Oncology, University of Oxford)

  • Johanna Shen

    (University of Oxford, John Radcliffe Hospital
    Department of Oncology, University of Oxford
    Yale University)

  • Iolanda Vendrell

    (Department of Oncology, University of Oxford
    University of Oxford)

  • Roman Fischer

    (University of Oxford)

  • Benedikt M. Kessler

    (University of Oxford)

  • Andrew N. Blackford

    (University of Oxford, John Radcliffe Hospital
    Department of Oncology, University of Oxford)

Abstract

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and processing of ultra-fine DNA bridges in mitosis. How these activities of the BTR complex are regulated in cells is still unclear. Here, we identify multiple conserved motifs within the BTR complex that interact cooperatively with the single-stranded DNA (ssDNA)-binding protein RPA. Furthermore, we demonstrate that RPA-binding is required for stable BLM recruitment to sites of DNA replication stress and for fork restart, but not for its roles in HR or mitosis. Our findings suggest a model in which the BTR complex contains the intrinsic ability to sense levels of RPA-ssDNA at replication forks, which controls BLM recruitment and activation in response to replication stress.

Suggested Citation

  • Ann-Marie K. Shorrocks & Samuel E. Jones & Kaima Tsukada & Carl A. Morrow & Zoulikha Belblidia & Johanna Shen & Iolanda Vendrell & Roman Fischer & Benedikt M. Kessler & Andrew N. Blackford, 2021. "The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20818-5
    DOI: 10.1038/s41467-020-20818-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20818-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20818-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poonam Roshan & Sahiti Kuppa & Jenna R. Mattice & Vikas Kaushik & Rahul Chadda & Nilisha Pokhrel & Brunda R. Tumala & Aparna Biswas & Brian Bothner & Edwin Antony & Sofia Origanti, 2023. "An Aurora B-RPA signaling axis secures chromosome segregation fidelity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Zita Gál & Stavroula Boukoura & Kezia Catharina Oxe & Sara Badawi & Blanca Nieto & Lea Milling Korsholm & Sille Blangstrup Geisler & Ekaterina Dulina & Anna Vestergaard Rasmussen & Christina Dahl & We, 2024. "Hyper-recombination in ribosomal DNA is driven by long-range resection-independent RAD51 accumulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. S. Cohen & A. Guenolé & I. Lazar & A. Marnef & T. Clouaire & D. V. Vernekar & N. Puget & V. Rocher & C. Arnould & M. Aguirrebengoa & M. Genais & N. Firmin & R. A. Shamanna & R. Mourad & V. A. Bohr & V, 2022. "A POLD3/BLM dependent pathway handles DSBs in transcribed chromatin upon excessive RNA:DNA hybrid accumulation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Chaoyou Xue & Sameer J. Salunkhe & Nozomi Tomimatsu & Ajinkya S. Kawale & Youngho Kwon & Sandeep Burma & Patrick Sung & Eric C. Greene, 2022. "Bloom helicase mediates formation of large single–stranded DNA loops during DNA end processing," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Liton Kumar Saha & Sourav Saha & Xi Yang & Shar-yin Naomi Huang & Yilun Sun & Ukhyun Jo & Yves Pommier, 2023. "Replication-associated formation and repair of human topoisomerase IIIα cleavage complexes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20818-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.