IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20805-w.html
   My bibliography  Save this article

Artemisinin-resistant K13 mutations rewire Plasmodium falciparum’s intra-erythrocytic metabolic program to enhance survival

Author

Listed:
  • Sachel Mok

    (Columbia University Irving Medical Center)

  • Barbara H. Stokes

    (Columbia University Irving Medical Center)

  • Nina F. Gnädig

    (Columbia University Irving Medical Center)

  • Leila S. Ross

    (Columbia University Irving Medical Center)

  • Tomas Yeo

    (Columbia University Irving Medical Center)

  • Chanaki Amaratunga

    (National Institutes of Health)

  • Erik Allman

    (Pennsylvania State University)

  • Lev Solyakov

    (University of Leicester)

  • Andrew R. Bottrill

    (University of Leicester)

  • Jaishree Tripathi

    (Nanyang Technological University)

  • Rick M. Fairhurst

    (National Institutes of Health
    Astra Zeneca)

  • Manuel Llinás

    (Pennsylvania State University
    Pennsylvania State University)

  • Zbynek Bozdech

    (Nanyang Technological University)

  • Andrew B. Tobin

    (University of Glasgow)

  • David A. Fidock

    (Columbia University Irving Medical Center
    Columbia University Irving Medical Center)

Abstract

The emergence and spread of artemisinin resistance, driven by mutations in Plasmodium falciparum K13, has compromised antimalarial efficacy and threatens the global malaria elimination campaign. By applying systems-based quantitative transcriptomics, proteomics, and metabolomics to a panel of isogenic K13 mutant or wild-type P. falciparum lines, we provide evidence that K13 mutations alter multiple aspects of the parasite’s intra-erythrocytic developmental program. These changes impact cell-cycle periodicity, the unfolded protein response, protein degradation, vesicular trafficking, and mitochondrial metabolism. K13-mediated artemisinin resistance in the Cambodian Cam3.II line was reversed by atovaquone, a mitochondrial electron transport chain inhibitor. These results suggest that mitochondrial processes including damage sensing and anti-oxidant properties might augment the ability of mutant K13 to protect P. falciparum against artemisinin action by helping these parasites undergo temporary quiescence and accelerated growth recovery post drug elimination.

Suggested Citation

  • Sachel Mok & Barbara H. Stokes & Nina F. Gnädig & Leila S. Ross & Tomas Yeo & Chanaki Amaratunga & Erik Allman & Lev Solyakov & Andrew R. Bottrill & Jaishree Tripathi & Rick M. Fairhurst & Manuel Llin, 2021. "Artemisinin-resistant K13 mutations rewire Plasmodium falciparum’s intra-erythrocytic metabolic program to enhance survival," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20805-w
    DOI: 10.1038/s41467-020-20805-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20805-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20805-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madeline G. Dans & Coralie Boulet & Gabrielle M. Watson & William Nguyen & Jerzy M. Dziekan & Cindy Evelyn & Kitsanapong Reaksudsan & Somya Mehra & Zahra Razook & Niall D. Geoghegan & Michael J. Mlodz, 2024. "Aryl amino acetamides prevent Plasmodium falciparum ring development via targeting the lipid-transfer protein PfSTART1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Sourav Ghosh & Rajib Kundu & Manjunatha Chandana & Rahul Das & Aditya Anand & Subhashree Beura & Ruchir Chandrakant Bobde & Vishal Jain & Sowmya Ramakant Prabhu & Prativa Kumari Behera & Akshaya Kumar, 2023. "Distinct evolution of type I glutamine synthetase in Plasmodium and its species-specific requirement," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
    3. Jaishree Tripathi & Michal Stoklasa & Sourav Nayak & Kay En Low & Erica Qian Hui Lee & Quang Huy Duong Tien & Laurent Rénia & Benoit Malleret & Zbynek Bozdech, 2024. "The artemisinin-induced dormant stages of Plasmodium falciparum exhibit hallmarks of cellular quiescence/senescence and drug resilience," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Wenyan Wan & Hui Dong & De-Hua Lai & Jiong Yang & Kai He & Xiaoyan Tang & Qun Liu & Geoff Hide & Xing-Quan Zhu & L. David Sibley & Zhao-Rong Lun & Shaojun Long, 2023. "The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20805-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.