Artemisinin-resistant K13 mutations rewire Plasmodium falciparum’s intra-erythrocytic metabolic program to enhance survival
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-020-20805-w
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sourav Nayak & Thomas J. Peto & Michal Kucharski & Rupam Tripura & James J. Callery & Duong Tien Quang Huy & Mathieu Gendrot & Dysoley Lek & Ho Dang Trung Nghia & Rob W. Pluijm & Nguyen Dong & Le Than, 2024. "Population genomics and transcriptomics of Plasmodium falciparum in Cambodia and Vietnam uncover key components of the artemisinin resistance genetic background," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Madeline G. Dans & Coralie Boulet & Gabrielle M. Watson & William Nguyen & Jerzy M. Dziekan & Cindy Evelyn & Kitsanapong Reaksudsan & Somya Mehra & Zahra Razook & Niall D. Geoghegan & Michael J. Mlodz, 2024. "Aryl amino acetamides prevent Plasmodium falciparum ring development via targeting the lipid-transfer protein PfSTART1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Sourav Ghosh & Rajib Kundu & Manjunatha Chandana & Rahul Das & Aditya Anand & Subhashree Beura & Ruchir Chandrakant Bobde & Vishal Jain & Sowmya Ramakant Prabhu & Prativa Kumari Behera & Akshaya Kumar, 2023. "Distinct evolution of type I glutamine synthetase in Plasmodium and its species-specific requirement," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
- Jaishree Tripathi & Michal Stoklasa & Sourav Nayak & Kay En Low & Erica Qian Hui Lee & Quang Huy Duong Tien & Laurent Rénia & Benoit Malleret & Zbynek Bozdech, 2024. "The artemisinin-induced dormant stages of Plasmodium falciparum exhibit hallmarks of cellular quiescence/senescence and drug resilience," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Wenyan Wan & Hui Dong & De-Hua Lai & Jiong Yang & Kai He & Xiaoyan Tang & Qun Liu & Geoff Hide & Xing-Quan Zhu & L. David Sibley & Zhao-Rong Lun & Shaojun Long, 2023. "The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20805-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.