Author
Listed:
- Nathalie Lassau
(Université Paris -Saclay
Université Paris-Saclay)
- Samy Ammari
(Université Paris -Saclay
Université Paris-Saclay)
- Emilie Chouzenoux
(Université Paris-Saclay, CentraleSupélec, Inria)
- Hugo Gortais
(Université Paris-Saclay)
- Paul Herent
(Owkin, Inc)
- Matthieu Devilder
(Université Paris-Saclay)
- Samer Soliman
(Université Paris-Saclay)
- Olivier Meyrignac
(Université Paris-Saclay)
- Marie-Pauline Talabard
(Université Paris-Saclay)
- Jean-Philippe Lamarque
(Université Paris -Saclay
Université Paris-Saclay)
- Remy Dubois
(Owkin, Inc)
- Nicolas Loiseau
(Owkin, Inc)
- Paul Trichelair
(Owkin, Inc)
- Etienne Bendjebbar
(Owkin, Inc)
- Gabriel Garcia
(Université Paris -Saclay)
- Corinne Balleyguier
(Université Paris -Saclay
Université Paris-Saclay)
- Mansouria Merad
(Université Paris-Saclay)
- Annabelle Stoclin
(Université Paris-Saclay)
- Simon Jegou
(Owkin, Inc)
- Franck Griscelli
(Université Paris-Saclay)
- Nicolas Tetelboum
(Université Paris -Saclay)
- Yingping Li
(Université Paris-Saclay
Université Paris-Saclay, CentraleSupélec, Inria)
- Sagar Verma
(Université Paris-Saclay, CentraleSupélec, Inria)
- Matthieu Terris
(Université Paris-Saclay, CentraleSupélec, Inria)
- Tasnim Dardouri
(Université Paris-Saclay, CentraleSupélec, Inria)
- Kavya Gupta
(Université Paris-Saclay, CentraleSupélec, Inria)
- Ana Neacsu
(Université Paris-Saclay, CentraleSupélec, Inria)
- Frank Chemouni
(Université Paris-Saclay)
- Meriem Sefta
(Owkin, Inc)
- Paul Jehanno
(Owkin, Inc)
- Imad Bousaid
(Université Paris-Saclay)
- Yannick Boursin
(Université Paris-Saclay)
- Emmanuel Planchet
(Université Paris-Saclay)
- Mikael Azoulay
(Université Paris-Saclay)
- Jocelyn Dachary
(Owkin, Inc)
- Fabien Brulport
(Owkin, Inc)
- Adrian Gonzalez
(Owkin, Inc)
- Olivier Dehaene
(Owkin, Inc)
- Jean-Baptiste Schiratti
(Owkin, Inc)
- Kathryn Schutte
(Owkin, Inc)
- Jean-Christophe Pesquet
(Université Paris-Saclay, CentraleSupélec, Inria)
- Hugues Talbot
(Université Paris-Saclay, CentraleSupélec, Inria)
- Elodie Pronier
(Owkin, Inc)
- Gilles Wainrib
(Owkin, Inc)
- Thomas Clozel
(Owkin, Inc)
- Fabrice Barlesi
(Université Paris-Saclay)
- Marie-France Bellin
(Université Paris-Saclay)
- Michael G. B. Blum
(Owkin, Inc)
Abstract
The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to the deep learning model. We show that neural network analysis of CT-scans brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP) explaining the measurable but limited 0.03 increase of AUC obtained when adding CT-scan information to clinical variables. Here, we show that when comparing AI-severity with 11 existing severity scores, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a reference scoring approach.
Suggested Citation
Nathalie Lassau & Samy Ammari & Emilie Chouzenoux & Hugo Gortais & Paul Herent & Matthieu Devilder & Samer Soliman & Olivier Meyrignac & Marie-Pauline Talabard & Jean-Philippe Lamarque & Remy Dubois &, 2021.
"Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients,"
Nature Communications, Nature, vol. 12(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20657-4
DOI: 10.1038/s41467-020-20657-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20657-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.