IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20640-z.html
   My bibliography  Save this article

Unravelling an oxygen-mediated reductive quenching pathway for photopolymerisation under long wavelengths

Author

Listed:
  • Chenyu Wu

    (University of New South Wales
    University of New South Wales
    Shandong University)

  • Kenward Jung

    (University of New South Wales
    University of New South Wales)

  • Yongtao Ma

    (Shandong University)

  • Wenjian Liu

    (Shandong University)

  • Cyrille Boyer

    (University of New South Wales
    University of New South Wales)

Abstract

Photomediated-reversible-deactivation radical polymerisation (photo-RDRP) has a limited scope of available photocatalysts (PCs) due to multiple stringent requirements for PC properties, limiting options for performing efficient polymerisations under long wavelengths. Here we report an oxygen-mediated reductive quenching pathway (O-RQP) for photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerisation. The highly efficient polymerisations that are performed in the presence of ambient air enable an expanded scope of available PCs covering a much-broadened absorption spectrum, where the oxygen tolerance of PET-RAFT allows high-quality polymerisation by preventing the existence of O2 in large amounts and efficient O-RQP is permitted due to its requirement for only catalytic amounts of O2. Initially, four different porphyrin dyes are investigated for their ability to catalyse PET-RAFT polymerisation via an oxidative quenching pathway (OQP), reductive quenching pathway (RQP) and O-RQP. Thermodynamic studies with the aid of (time-dependent) density functional theory calculations in combination with experimental studies, enable the identification of the thermodynamic constraints within the OQP, RQP and O-RQP frameworks. This knowledge enables the identification of four phthalocyanine photocatalysts, that were previously thought to be inert for PET-RAFT, to be successfully used for photopolymerisations via O-RQP. Well-controlled polymerisations displaying excellent livingness are performed at wavelengths in the red to near-infrared regions. The existence of this third pathway O-RQP provides an attractive pathway to further expand the scope of photocatalysts compatible with the PET-RAFT process and facile access to photopolymerisations under long wavelengths.

Suggested Citation

  • Chenyu Wu & Kenward Jung & Yongtao Ma & Wenjian Liu & Cyrille Boyer, 2021. "Unravelling an oxygen-mediated reductive quenching pathway for photopolymerisation under long wavelengths," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20640-z
    DOI: 10.1038/s41467-020-20640-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20640-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20640-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Cheng & Guihai Gan & Shaoqiu Zheng & Guoying Zhang & Chen Zhu & Shiyong Liu & Jinming Hu, 2023. "Biofilm heterogeneity-adaptive photoredox catalysis enables red light-triggered nitric oxide release for combating drug-resistant infections," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Lei Wang & Yupo Xu & Quan Zuo & Haojie Dai & Lei Huang & Meng Zhang & Yongli Zheng & Chunyang Yu & Shaodong Zhang & Yongfeng Zhou, 2022. "Visible light-controlled living cationic polymerization of methoxystyrene," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Wei-Wei Fang & Gui-Yu Yang & Zi-Hui Fan & Zi-Chao Chen & Xun-Liang Hu & Zhen Zhan & Irshad Hussain & Yang Lu & Tao He & Bi-En Tan, 2023. "Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20640-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.