IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20610-5.html
   My bibliography  Save this article

Concomitant control of mechanical properties and degradation in resorbable elastomer-like materials using stereochemistry and stoichiometry for soft tissue engineering

Author

Listed:
  • Mary Beth Wandel

    (The University of Akron)

  • Craig A. Bell

    (The University of Warwick
    The University of Queensland
    The University of Queensland)

  • Jiayi Yu

    (The University of Akron)

  • Maria C. Arno

    (The University of Birmingham)

  • Nathan Z. Dreger

    (The University of Akron)

  • Yen-Hao Hsu

    (The University of Akron)

  • Anaïs Pitto-Barry

    (The University of Warwick)

  • Joshua C. Worch

    (The University of Birmingham)

  • Andrew P. Dove

    (The University of Birmingham)

  • Matthew L. Becker

    (Duke University)

Abstract

Complex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.

Suggested Citation

  • Mary Beth Wandel & Craig A. Bell & Jiayi Yu & Maria C. Arno & Nathan Z. Dreger & Yen-Hao Hsu & Anaïs Pitto-Barry & Joshua C. Worch & Andrew P. Dove & Matthew L. Becker, 2021. "Concomitant control of mechanical properties and degradation in resorbable elastomer-like materials using stereochemistry and stoichiometry for soft tissue engineering," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20610-5
    DOI: 10.1038/s41467-020-20610-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20610-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20610-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samantha M. McDonald & Quansan Yang & Yen-Hao Hsu & Shantanu P. Nikam & Ziying Hu & Zilu Wang & Darya Asheghali & Tiffany Yen & Andrey V. Dobrynin & John A. Rogers & Matthew L. Becker, 2023. "Resorbable barrier polymers for flexible bioelectronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Quansan Yang & Ziying Hu & Min-Ho Seo & Yameng Xu & Ying Yan & Yen-Hao Hsu & Jaime Berkovich & Kwonjae Lee & Tzu-Li Liu & Samantha McDonald & Haolin Nie & Hannah Oh & Mingzheng Wu & Jin-Tae Kim & Step, 2022. "High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20610-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.