Author
Listed:
- Matthias Heiss
(Ludwig-Maximilians-University Munich)
- Felix Hagelskamp
(Ludwig-Maximilians-University Munich)
- Virginie Marchand
(Université de Lorraine, CNRS, Inserm, UMS2008/US40 IBSLor and UMR7365 IMoPA)
- Yuri Motorin
(Université de Lorraine, CNRS, Inserm, UMS2008/US40 IBSLor and UMR7365 IMoPA)
- Stefanie Kellner
(Ludwig-Maximilians-University Munich
Goethe-University Frankfurt)
Abstract
Recently, studies about RNA modification dynamics in human RNAs are among the most controversially discussed. As a main reason, we identified the unavailability of a technique which allows the investigation of the temporal processing of RNA transcripts. Here, we present nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS) for efficient, monoisotopic stable isotope labeling in both RNA and DNA in standard cell culture. We design pulse chase experiments and study the temporal placement of modified nucleosides in tRNAPhe and 18S rRNA. In existing RNAs, we observe a time-dependent constant loss of modified nucleosides which is masked by post-transcriptional methylation mechanisms and thus undetectable without NAIL-MS. During alkylation stress, NAIL-MS reveals an adaptation of tRNA modifications in new transcripts but not existing ones. Overall, we present a fast and reliable stable isotope labeling strategy which allows in-depth study of RNA modification dynamics in human cell culture.
Suggested Citation
Matthias Heiss & Felix Hagelskamp & Virginie Marchand & Yuri Motorin & Stefanie Kellner, 2021.
"Cell culture NAIL-MS allows insight into human tRNA and rRNA modification dynamics in vivo,"
Nature Communications, Nature, vol. 12(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20576-4
DOI: 10.1038/s41467-020-20576-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20576-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.