IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20528-y.html
   My bibliography  Save this article

Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling

Author

Listed:
  • You Ba

    (Tsinghua University
    Tsinghua University)

  • Shihao Zhuang

    (University of Wisconsin-Madison)

  • Yike Zhang

    (Tsinghua University
    Tsinghua University)

  • Yutong Wang

    (Tsinghua University
    Tsinghua University)

  • Yang Gao

    (Lanzhou University)

  • Hengan Zhou

    (Tsinghua University
    Tsinghua University)

  • Mingfeng Chen

    (Tsinghua University)

  • Weideng Sun

    (Tsinghua University
    Tsinghua University)

  • Quan Liu

    (Tsinghua University
    Tsinghua University)

  • Guozhi Chai

    (Lanzhou University)

  • Jing Ma

    (Tsinghua University)

  • Ying Zhang

    (Chinese Academy of Sciences)

  • Huanfang Tian

    (Chinese Academy of Sciences)

  • Haifeng Du

    (University of Science and Technology of China)

  • Wanjun Jiang

    (Tsinghua University
    Tsinghua University)

  • Cewen Nan

    (Tsinghua University)

  • Jia-Mian Hu

    (University of Wisconsin-Madison)

  • Yonggang Zhao

    (Tsinghua University
    Tsinghua University)

Abstract

Room-temperature skyrmions in magnetic multilayers are considered to be promising candidates for the next-generation spintronic devices. Several approaches have been developed to control skyrmions, but they either cause significant heat dissipation or require ultrahigh electric fields near the breakdown threshold. Here, we demonstrate electric-field control of skyrmions through strain-mediated magnetoelectric coupling in ferromagnetic/ferroelectric multiferroic heterostructures. We show the process of non-volatile creation of multiple skyrmions, reversible deformation and annihilation of a single skyrmion by performing magnetic force microscopy with in situ electric fields. Strain-induced changes in perpendicular magnetic anisotropy and interfacial Dzyaloshinskii–Moriya interaction strength are characterized experimentally. These experimental results, together with micromagnetic simulations, demonstrate that strain-mediated magnetoelectric coupling (via strain-induced changes in both the perpendicular magnetic anisotropy and interfacial Dzyaloshinskii–Moriya interaction is responsible for the observed electric-field control of skyrmions. Our work provides a platform to investigate electric-field control of skyrmions in multiferroic heterostructures and paves the way towards more energy-efficient skyrmion-based spintronics.

Suggested Citation

  • You Ba & Shihao Zhuang & Yike Zhang & Yutong Wang & Yang Gao & Hengan Zhou & Mingfeng Chen & Weideng Sun & Quan Liu & Guozhi Chai & Jing Ma & Ying Zhang & Huanfang Tian & Haifeng Du & Wanjun Jiang & C, 2021. "Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20528-y
    DOI: 10.1038/s41467-020-20528-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20528-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20528-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sihua Feng & Hengli Duan & Hao Tan & Fengchun Hu & Chaocheng Liu & Yao Wang & Zhi Li & Liang Cai & Yuyang Cao & Chao Wang & Zeming Qi & Li Song & Xuguang Liu & Zhihu Sun & Wensheng Yan, 2023. "Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yiming Sun & Tao Lin & Na Lei & Xing Chen & Wang Kang & Zhiyuan Zhao & Dahai Wei & Chao Chen & Simin Pang & Linglong Hu & Liu Yang & Enxuan Dong & Li Zhao & Lei Liu & Zhe Yuan & Aladin Ullrich & Chris, 2023. "Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Ellen Fogh & Bastian Klemke & Manfred Reehuis & Philippe Bourges & Christof Niedermayer & Sonja Holm-Dahlin & Oksana Zaharko & Jürg Schefer & Andreas B. Kristensen & Michael K. Sørensen & Sebastian Pa, 2023. "Tuning magnetoelectricity in a mixed-anisotropy antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20528-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.