IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20521-5.html
   My bibliography  Save this article

Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions

Author

Listed:
  • Chaofeng Huang

    (Southeast University
    School of Chemistry and Chemical Engineering of Shihezi University)

  • Yaping Wen

    (Nanjing University)

  • Jin Ma

    (Southeast University)

  • Dandan Dong

    (School of Chemistry and Chemical Engineering of Shihezi University)

  • Yanfei Shen

    (Southeast University)

  • Songqin Liu

    (Southeast University)

  • Haibo Ma

    (Nanjing University)

  • Yuanjian Zhang

    (Southeast University)

Abstract

Covalently bonded carbon nitride (CN) has stimulated extensive attention as a metal-free semiconductor. However, because of the complexity of polymeric structures, the acquisition of critical roles of each molecular constituent in CN for photocatalysis remains elusive. Herein, we clarify the fundamental active units of CN in photocatalysis by synthesizing CN with more detailed molecular structures. Enabled by microwave synthesis, the as-prepared CN consists of distinguishable melem (M1) and its incomplete condensed form (M2). We disclose rather than the traditional opinion of being involved in the whole photocatalytic processes, M1 and M2 make primary contributions in light absorption and charge separation, respectively. Meanwhile, oxygen molecules are unusually observed to be activated by participating in the photoexcited processes via electronic coupling mainly to M2. As a result, such CN has a higher activity, which was up to 8 times that of traditional bulk CN for photocatalytic oxidation of tetracycline in water.

Suggested Citation

  • Chaofeng Huang & Yaping Wen & Jin Ma & Dandan Dong & Yanfei Shen & Songqin Liu & Haibo Ma & Yuanjian Zhang, 2021. "Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20521-5
    DOI: 10.1038/s41467-020-20521-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20521-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20521-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Liu & Jianhui Sun & Houhou Huang & Linlu Bai & Xiaomeng Zhao & Binhong Qu & Lunqiao Xiong & Fuquan Bai & Junwang Tang & Liqiang Jing, 2023. "Improving CO2 photoconversion with ionic liquid and Co single atoms," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Qing Hong & Hong Yang & Yanfeng Fang & Wang Li & Caixia Zhu & Zhuang Wang & Sicheng Liang & Xuwen Cao & Zhixin Zhou & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2023. "Adaptable graphitic C6N6-based copper single-atom catalyst for intelligent biosensing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20521-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.