IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20470-z.html
   My bibliography  Save this article

Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion

Author

Listed:
  • Jens Terhaar

    (Université Paris-Saclay
    Université Libre de Bruxelles
    University of Bern
    University of Bern)

  • Ronny Lauerwald

    (Université Paris-Saclay
    Université Libre de Bruxelles
    UMR ECOSYS)

  • Pierre Regnier

    (Université Libre de Bruxelles)

  • Nicolas Gruber

    (ETH Zurich)

  • Laurent Bopp

    (Sorbonne Université)

Abstract

Net primary production (NPP) is the foundation of the oceans’ ecosystems and the fisheries they support. In the Arctic Ocean, NPP is controlled by a complex interplay of light and nutrients supplied by upwelling as well as lateral inflows from adjacent oceans and land. But so far, the role of the input from land by rivers and coastal erosion has not been given much attention. Here, by upscaling observations from the six largest rivers and using measured coastal erosion rates, we construct a pan-Arctic, spatio-temporally resolved estimate of the land input of carbon and nutrients to the Arctic Ocean. Using an ocean-biogeochemical model, we estimate that this input fuels 28–51% of the current annual Arctic Ocean NPP. This strong enhancement of NPP is a consequence of efficient recycling of the land-derived nutrients on the vast Arctic shelves. Our results thus suggest that nutrient input from the land is a key process that will affect the future evolution of Arctic Ocean NPP.

Suggested Citation

  • Jens Terhaar & Ronny Lauerwald & Pierre Regnier & Nicolas Gruber & Laurent Bopp, 2021. "Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20470-z
    DOI: 10.1038/s41467-020-20470-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20470-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20470-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seung Hyeon Lim & Younggwang Kim & Laura C. Motta & Eun Jin Yang & Tae Siek Rhee & Jong Kuk Hong & Seunghee Han & Sae Yun Kwon, 2024. "Near surface oxidation of elemental mercury leads to mercury exposure in the Arctic Ocean biota," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Beatriz Ferreira Araujo & Stefan Osterwalder & Natalie Szponar & Domenica Lee & Mariia V. Petrova & Jakob Boyd Pernov & Shaddy Ahmed & Lars-Eric Heimbürger-Boavida & Laure Laffont & Roman Teisserenc &, 2022. "Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Moritz Mathis & Fabrice Lacroix & Stefan Hagemann & David Marcolino Nielsen & Tatiana Ilyina & Corinna Schrum, 2024. "Enhanced CO2 uptake of the coastal ocean is dominated by biological carbon fixation," Nature Climate Change, Nature, vol. 14(4), pages 373-379, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20470-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.