IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20298-7.html
   My bibliography  Save this article

MOF-in-COF molecular sieving membrane for selective hydrogen separation

Author

Listed:
  • Hongwei Fan

    (Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover)

  • Manhua Peng

    (Institut für Festkörperphysik, Leibniz Universität Hannover)

  • Ina Strauss

    (Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover)

  • Alexander Mundstock

    (Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover)

  • Hong Meng

    (Beijing University of Chemical Technology)

  • Jürgen Caro

    (Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover
    South China University of Technology)

Abstract

Covalent organic frameworks (COFs) are promising materials for advanced molecular-separation membranes, but their wide nanometer-sized pores prevent selective gas separation through molecular sieving. Herein, we propose a MOF-in-COF concept for the confined growth of metal-organic framework (MOFs) inside a supported COF layer to prepare MOF-in-COF membranes. These membranes feature a unique MOF-in-COF micro/nanopore network, presumably due to the formation of MOFs as a pearl string-like chain of unit cells in the 1D channel of 2D COFs. The MOF-in-COF membranes exhibit an excellent hydrogen permeance (>3000 GPU) together with a significant enhancement of separation selectivity of hydrogen over other gases. The superior separation performance for H2/CO2 and H2/CH4 surpasses the Robeson upper bounds, benefiting from the synergy combining precise size sieving and fast molecular transport through the MOF-in-COF channels. The synthesis of different combinations of MOFs and COFs in robust MOF-in-COF membranes demonstrates the versatility of our design strategy.

Suggested Citation

  • Hongwei Fan & Manhua Peng & Ina Strauss & Alexander Mundstock & Hong Meng & Jürgen Caro, 2021. "MOF-in-COF molecular sieving membrane for selective hydrogen separation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20298-7
    DOI: 10.1038/s41467-020-20298-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20298-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20298-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Shangcong & Jiang, Qiuqiao & Zhao, Dongyue & Cao, Tiantian & Sha, Hao & Zhang, Chuankun & Song, Haitao & Da, Zhijian, 2022. "Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Tanmoy Maity & Susmita Sarkar & Susmita Kundu & Suvendu Panda & Arighna Sarkar & Raheel Hammad & Kalyaneswar Mandal & Soumya Ghosh & Jagannath Mondal & Ritesh Haldar, 2024. "Steering diffusion selectivity of chemical isomers within aligned nanochannels of metal-organic framework thin film," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Mingke Yang & Huishan Wang & Julian Y. Zuo & Chun Deng & Bei Liu & Liya Chai & Kun Li & Han Xiao & Peng Xiao & Xiaohui Wang & Wan Chen & Xiaowan Peng & Yu Han & Zixuan Huang & Baocan Dong & Changyu Su, 2022. "Efficient separation of butane isomers via ZIF-8 slurry on laboratory- and pilot-scale," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xueru Yan & Tianqi Song & Min Li & Zhi Wang & Xinlei Liu, 2024. "Sub-micro porous thin polymer membranes for discriminating H2 and CO2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20298-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.