IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20078-3.html
   My bibliography  Save this article

Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin

Author

Listed:
  • Daohua Jiang

    (University of Washington)

  • Lige Tonggu

    (University of Washington)

  • Tamer M. Gamal El-Din

    (University of Washington)

  • Richard Banh

    (Molecular Medicine, Hospital for Sick Children
    University of Toronto)

  • Régis Pomès

    (Molecular Medicine, Hospital for Sick Children
    University of Toronto)

  • Ning Zheng

    (University of Washington
    Howard Hughes Medical Institute, University of Washington)

  • William A. Catterall

    (University of Washington)

Abstract

Voltage-gated sodium (NaV) channels initiate action potentials in excitable cells, and their function is altered by potent gating-modifier toxins. The α-toxin LqhIII from the deathstalker scorpion inhibits fast inactivation of cardiac NaV1.5 channels with IC50 = 11.4 nM. Here we reveal the structure of LqhIII bound to NaV1.5 at 3.3 Å resolution by cryo-EM. LqhIII anchors on top of voltage-sensing domain IV, wedged between the S1-S2 and S3-S4 linkers, which traps the gating charges of the S4 segment in a unique intermediate-activated state stabilized by four ion-pairs. This conformational change is propagated inward to weaken binding of the fast inactivation gate and favor opening the activation gate. However, these changes do not permit Na+ permeation, revealing why LqhIII slows inactivation of NaV channels but does not open them. Our results provide important insights into the structural basis for gating-modifier toxin binding, voltage-sensor trapping, and fast inactivation of NaV channels.

Suggested Citation

  • Daohua Jiang & Lige Tonggu & Tamer M. Gamal El-Din & Richard Banh & Régis Pomès & Ning Zheng & William A. Catterall, 2021. "Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20078-3
    DOI: 10.1038/s41467-020-20078-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20078-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20078-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Li & Tian Yuan & Bo Huang & Feng Zhou & Chao Peng & Xiaojing Li & Yunlong Qiu & Bei Yang & Yan Zhao & Zhuo Huang & Daohua Jiang, 2023. "Structure of human NaV1.6 channel reveals Na+ selectivity and pore blockade by 4,9-anhydro-tetrodotoxin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Xiaojing Li & Feng Xu & Hao Xu & Shuli Zhang & Yiwei Gao & Hongwei Zhang & Yanli Dong & Yanchun Zheng & Bei Yang & Jianyuan Sun & Xuejun Cai Zhang & Yan Zhao & Daohua Jiang, 2022. "Structural basis for modulation of human NaV1.3 by clinical drug and selective antagonist," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Lige Tonggu & Goragot Wisedchaisri & Tamer M. Gamal El-Din & Michael J. Lenaeus & Matthew M. Logan & Tatsuya Toma & Justin Bois & Ning Zheng & William A. Catterall, 2024. "Dual receptor-sites reveal the structural basis for hyperactivation of sodium channels by poison-dart toxin batrachotoxin," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Rían W. Manville & J. Alfredo Freites & Richard Sidlow & Douglas J. Tobias & Geoffrey W. Abbott, 2023. "Native American ataxia medicines rescue ataxia-linked mutant potassium channel activity via binding to the voltage sensing domain," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20078-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.