IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-20147-7.html
   My bibliography  Save this article

High-resolution ex vivo NMR spectroscopy of human Z α1-antitrypsin

Author

Listed:
  • Alistair M. Jagger

    (University College London
    University of London)

  • Christopher A. Waudby

    (University of London)

  • James A. Irving

    (University College London
    University of London)

  • John Christodoulou

    (University of London)

  • David A. Lomas

    (University College London
    University of London)

Abstract

Genetic mutations predispose the serine protease inhibitor α1-antitrypsin to misfolding and polymerisation within hepatocytes, causing liver disease and chronic obstructive pulmonary disease. This misfolding occurs via a transiently populated intermediate state, but our structural understanding of this process is limited by the instability of recombinant α1-antitrypsin variants in solution. Here we apply NMR spectroscopy to patient-derived samples of α1-antitrypsin at natural isotopic abundance to investigate the consequences of disease-causing mutations, and observe widespread chemical shift perturbations for methyl groups in Z AAT (E342K). By comparison with perturbations induced by binding of a small-molecule inhibitor of misfolding we conclude that they arise from rapid exchange between the native conformation and a well-populated intermediate state. The observation that this intermediate is stabilised by inhibitor binding suggests a paradoxical approach to the targeted treatment of protein misfolding disorders, wherein the stabilisation of disease-associated states provides selectivity while inhibiting further transitions along misfolding pathways.

Suggested Citation

  • Alistair M. Jagger & Christopher A. Waudby & James A. Irving & John Christodoulou & David A. Lomas, 2020. "High-resolution ex vivo NMR spectroscopy of human Z α1-antitrypsin," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20147-7
    DOI: 10.1038/s41467-020-20147-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20147-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20147-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Plessa & Lien P. Chu & Sammy H. S. Chan & Oliver L. Thomas & Anaïs M. E. Cassaignau & Christopher A. Waudby & John Christodoulou & Lisa D. Cabrita, 2021. "Nascent chains can form co-translational folding intermediates that promote post-translational folding outcomes in a disease-causing protein," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20147-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.