Author
Listed:
- Arturo Hernández-Cervantes
(Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC
Université de Paris / Inserm)
- Sadri Znaidi
(Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC
Institut Pasteur de Tunis, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Bâtiment Etienne Burnet
University of Tunis-El Manar)
- Lasse Wijlick
(Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC)
- Iryna Denega
(Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC
Université de Paris, Sorbonne Paris Cité)
- Virginia Basso
(Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC
Université de Paris, Sorbonne Paris Cité
University of Southern California)
- Jeanne Ropars
(Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC
Université Paris-Saclay, CNRS, AgroParisTech, Écologie, Systématique, Évolution)
- Natacha Sertour
(Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC)
- Derek Sullivan
(Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin)
- Gary Moran
(Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin)
- Louise Basmaciyan
(UMR PAM, Université de Bourgogne Franche-Comté, AgroSup Dijon – Equipe VAIMiS
Centre Hospitalier Universitaire François Mitterand, Service de Parasitologie Mycologie)
- Fabienne Bon
(UMR PAM, Université de Bourgogne Franche-Comté, AgroSup Dijon – Equipe VAIMiS)
- Frédéric Dalle
(UMR PAM, Université de Bourgogne Franche-Comté, AgroSup Dijon – Equipe VAIMiS
Centre Hospitalier Universitaire François Mitterand, Service de Parasitologie Mycologie)
- Marie-Elisabeth Bougnoux
(Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC
Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Université de Paris)
- Teun Boekhout
(Westerdijk Fungal Biodiversity Institute
Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam)
- Ying Yang
(Beijing Institute of Radiation Medicine)
- Zongwei Li
(Center for Hospital Infection Control, Institute for Disease Control & Prevention)
- Sophie Bachellier-Bassi
(Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC)
- Christophe d’Enfert
(Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC)
Abstract
Transcription factor Rme1 is conserved among ascomycetes and regulates meiosis and pseudohyphal growth in Saccharomyces cerevisiae. The genome of the meiosis-defective pathogen Candida albicans encodes an Rme1 homolog that is part of a transcriptional circuitry controlling hyphal growth. Here, we use chromatin immunoprecipitation and genome-wide expression analyses to study a possible role of Rme1 in C. albicans morphogenesis. We find that Rme1 binds upstream and activates the expression of genes that are upregulated during chlamydosporulation, an asexual process leading to formation of large, spherical, thick-walled cells during nutrient starvation. RME1 deletion abolishes chlamydosporulation in three Candida species, whereas its overexpression bypasses the requirement for chlamydosporulation cues and regulators. RME1 expression levels correlate with chlamydosporulation efficiency across clinical isolates. Interestingly, RME1 displays a biphasic pattern of expression, with a first phase independent of Rme1 function and dependent on chlamydospore-inducing cues, and a second phase dependent on Rme1 function and independent of chlamydospore-inducing cues. Our results indicate that Rme1 plays a central role in chlamydospore development in Candida species.
Suggested Citation
Arturo Hernández-Cervantes & Sadri Znaidi & Lasse Wijlick & Iryna Denega & Virginia Basso & Jeanne Ropars & Natacha Sertour & Derek Sullivan & Gary Moran & Louise Basmaciyan & Fabienne Bon & Frédéric , 2020.
"A conserved regulator controls asexual sporulation in the fungal pathogen Candida albicans,"
Nature Communications, Nature, vol. 11(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20010-9
DOI: 10.1038/s41467-020-20010-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20010-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.