Author
Listed:
- Abbas Shiri
(University of Central Florida
University of Central Florida)
- Murat Yessenov
(University of Central Florida)
- Scott Webster
(University of Central Florida)
- Kenneth L. Schepler
(University of Central Florida)
- Ayman F. Abouraddy
(University of Central Florida
University of Central Florida)
Abstract
Light is confined transversely and delivered axially in a waveguide. However, waveguides are lossy static structures whose modal characteristics are fundamentally determined by their boundary conditions. Here we show that unpatterned planar waveguides can provide low-loss two-dimensional waveguiding by using space-time wave packets, which are unique one-dimensional propagation-invariant pulsed optical beams. We observe hybrid guided space-time modes that are index-guided in one transverse dimension and localized along the unbounded dimension. We confirm that these fields enable overriding the boundary conditions by varying post-fabrication the group index of the fundamental mode in a 2-μm-thick, 25-mm-long silica film, achieved by modifying the field’s spatio-temporal structure. Tunability of the group index over an unprecedented range from 1.26 to 1.77 is verified while maintaining a spectrally flat zero-dispersion profile. Our work paves the way to utilizing space-time wave packets in on-chip platforms, and enable phase-matching strategies that circumvent restrictions due to intrinsic material properties.
Suggested Citation
Abbas Shiri & Murat Yessenov & Scott Webster & Kenneth L. Schepler & Ayman F. Abouraddy, 2020.
"Hybrid guided space-time optical modes in unpatterned films,"
Nature Communications, Nature, vol. 11(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20009-2
DOI: 10.1038/s41467-020-20009-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20009-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.