IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-20000-x.html
   My bibliography  Save this article

Sis1 potentiates the stress response to protein aggregation and elevated temperature

Author

Listed:
  • Courtney L. Klaips

    (Max Planck Institute of Biochemistry
    University Medical Center Groningen, University of Groningen)

  • Michael H. M. Gropp

    (Max Planck Institute of Biochemistry)

  • Mark S. Hipp

    (University Medical Center Groningen, University of Groningen
    Carl von Ossietzky University Oldenburg)

  • F. Ulrich Hartl

    (Max Planck Institute of Biochemistry)

Abstract

Cells adapt to conditions that compromise protein conformational stability by activating various stress response pathways, but the mechanisms used in sensing misfolded proteins remain unclear. Moreover, aggregates of disease proteins often fail to induce a productive stress response. Here, using a yeast model of polyQ protein aggregation, we identified Sis1, an essential Hsp40 co-chaperone of Hsp70, as a critical sensor of proteotoxic stress. At elevated levels, Sis1 prevented the formation of dense polyQ inclusions and directed soluble polyQ oligomers towards the formation of permeable condensates. Hsp70 accumulated in a liquid-like state within this polyQ meshwork, resulting in a potent activation of the HSF1 dependent stress response. Sis1, and the homologous DnaJB6 in mammalian cells, also regulated the magnitude of the cellular heat stress response, suggesting a general role in sensing protein misfolding. Sis1/DnaJB6 functions as a limiting regulator to enable a dynamic stress response and avoid hypersensitivity to environmental changes.

Suggested Citation

  • Courtney L. Klaips & Michael H. M. Gropp & Mark S. Hipp & F. Ulrich Hartl, 2020. "Sis1 potentiates the stress response to protein aggregation and elevated temperature," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20000-x
    DOI: 10.1038/s41467-020-20000-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20000-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20000-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeonghyun Oh & Christy Catherine & Eun Seon Kim & Kwang Wook Min & Hae Chan Jeong & Hyojin Kim & Mijin Kim & Seung Hae Ahn & Nataliia Lukianenko & Min Gu Jo & Hyeon Seok Bak & Sungsu Lim & Yun Kyung K, 2025. "Engineering a membrane protein chaperone to ameliorate the proteotoxicity of mutant huntingtin," Nature Communications, Nature, vol. 16(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20000-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.