IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19908-1.html
   My bibliography  Save this article

Single particle tunneling spectrum of superconducting Nd1-xSrxNiO2 thin films

Author

Listed:
  • Qiangqiang Gu

    (Nanjing University)

  • Yueying Li

    (Nanjing University)

  • Siyuan Wan

    (Nanjing University)

  • Huazhou Li

    (Nanjing University)

  • Wei Guo

    (Nanjing University)

  • Huan Yang

    (Nanjing University)

  • Qing Li

    (Nanjing University)

  • Xiyu Zhu

    (Nanjing University)

  • Xiaoqing Pan

    (University of California)

  • Yuefeng Nie

    (Nanjing University)

  • Hai-Hu Wen

    (Nanjing University)

Abstract

The pairing mechanism in cuprates remains as one of the most challenging issues in condensed matter physics. Recently, superconductivity was discovered in thin films of the infinite-layer nickelate Nd1-xSrxNiO2 (x = 0.12–0.25) which is believed to have the similar 3d9 orbital electrons as that in cuprates. Here we report single-particle tunneling measurements on the superconducting nickelate thin films. We find predominantly two types of tunneling spectra, one shows a V-shape feature which can be fitted well by a d-wave gap function with gap maximum of about 3.9 meV, another one exhibits a full gap of about 2.35 meV. Some spectra demonstrate mixed contributions of these two components. Combining with theoretical calculations, we attribute the d-wave gap to the pairing potential of the $${\mathrm{Ni - }}3d_{x^2 - y^2}$$ Ni- 3 d x 2 − y 2 orbital. Several possible reasons are given for explaining the full gap feature. Our results indicate both similarities and distinctions between the newly found Ni-based superconductors and cuprates.

Suggested Citation

  • Qiangqiang Gu & Yueying Li & Siyuan Wan & Huazhou Li & Wei Guo & Huan Yang & Qing Li & Xiyu Zhu & Xiaoqing Pan & Yuefeng Nie & Hai-Hu Wen, 2020. "Single particle tunneling spectrum of superconducting Nd1-xSrxNiO2 thin films," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19908-1
    DOI: 10.1038/s41467-020-19908-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19908-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19908-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoran Ji & Yi Liu & Yanan Li & Xiang Ding & Zheyuan Xie & Chengcheng Ji & Shichao Qi & Xiaoyue Gao & Minghui Xu & Peng Gao & Liang Qiao & Yi-feng Yang & Guang-Ming Zhang & Jian Wang, 2023. "Rotational symmetry breaking in superconducting nickelate Nd0.8Sr0.2NiO2 films," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Chao Chen & Peigeng Zhong & Xuelei Sui & Runyu Ma & Ying Liang & Shijie Hu & Tianxing Ma & Hai-Qing Lin & Bing Huang, 2024. "Charge stripe manipulation of superconducting pairing symmetry transition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. N. N. Wang & M. W. Yang & Z. Yang & K. Y. Chen & H. Zhang & Q. H. Zhang & Z. H. Zhu & Y. Uwatoko & L. Gu & X. L. Dong & J. P. Sun & K. J. Jin & J.-G. Cheng, 2022. "Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19908-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.