IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19892-6.html
   My bibliography  Save this article

An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo

Author

Listed:
  • Francesca Vallese

    (University of Padova)

  • Cristina Catoni

    (University of Padova)

  • Domenico Cieri

    (University of Padova)

  • Lucia Barazzuol

    (University of Padova)

  • Omar Ramirez

    (Interdisciplinary Center for Neurosciences, Heidelberg University)

  • Valentina Calore

    (University of Padova)

  • Massimo Bonora

    (Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara
    Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara)

  • Flavia Giamogante

    (University of Padova)

  • Paolo Pinton

    (Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara
    Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara)

  • Marisa Brini

    (University of Padova)

  • Tito Calì

    (University of Padova
    Padova Neuroscience Center (PNC), University of Padova)

Abstract

Membrane contact sites between virtually any known organelle have been documented and, in the last decades, their study received momentum due to their importance for fundamental activities of the cell and for the subtle comprehension of many human diseases. The lack of tools to finely image inter-organelle proximity hindered our understanding on how these subcellular communication hubs mediate and regulate cell homeostasis. We develop an improved and expanded palette of split-GFP-based contact site sensors (SPLICS) for the detection of single and multiple organelle contact sites within a scalable distance range. We demonstrate their flexibility under physiological conditions and in living organisms.

Suggested Citation

  • Francesca Vallese & Cristina Catoni & Domenico Cieri & Lucia Barazzuol & Omar Ramirez & Valentina Calore & Massimo Bonora & Flavia Giamogante & Paolo Pinton & Marisa Brini & Tito Calì, 2020. "An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19892-6
    DOI: 10.1038/s41467-020-19892-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19892-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19892-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Flavia Giamogante & Lucia Barazzuol & Francesca Maiorca & Elena Poggio & Alessandra Esposito & Anna Masato & Gennaro Napolitano & Alessio Vagnoni & Tito Calì & Marisa Brini, 2024. "A SPLICS reporter reveals $${{{{{\boldsymbol{\alpha }}}}}}$$ α -synuclein regulation of lysosome-mitochondria contacts which affects TFEB nuclear translocation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Maria Casas & Karl D. Murray & Keiko Hino & Nicholas C. Vierra & Sergi Simó & James S. Trimmer & Rose E. Dixon & Eamonn J. Dickson, 2023. "NPC1-dependent alterations in KV2.1–CaV1.2 nanodomains drive neuronal death in models of Niemann-Pick Type C disease," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    4. Eunbyul Cho & Youngsik Woo & Yeongjun Suh & Bo Kyoung Suh & Soo Jeong Kim & Truong Thi My Nhung & Jin Yeong Yoo & Tran Diem Nghi & Su Been Lee & Dong Jin Mun & Sang Ki Park, 2023. "Ratiometric measurement of MAM Ca2+ dynamics using a modified CalfluxVTN," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Paloma García Casas & Michela Rossini & Linnea Påvénius & Mezida Saeed & Nikita Arnst & Sonia Sonda & Tânia Fernandes & Irene D’Arsiè & Matteo Bruzzone & Valeria Berno & Andrea Raimondi & Maria Livia , 2024. "Simultaneous detection of membrane contact dynamics and associated Ca2+ signals by reversible chemogenetic reporters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19892-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.