Author
Listed:
- S. Schröder
(Deutsches Elektronen-Synchrotron DESY
Universität Hamburg)
- C. A. Lindstrøm
(Deutsches Elektronen-Synchrotron DESY)
- S. Bohlen
(Deutsches Elektronen-Synchrotron DESY
Universität Hamburg)
- G. Boyle
(Deutsches Elektronen-Synchrotron DESY)
- R. D’Arcy
(Deutsches Elektronen-Synchrotron DESY)
- S. Diederichs
(Deutsches Elektronen-Synchrotron DESY
Universität Hamburg)
- M. J. Garland
(Deutsches Elektronen-Synchrotron DESY)
- P. Gonzalez
(Deutsches Elektronen-Synchrotron DESY
Universität Hamburg)
- A. Knetsch
(Deutsches Elektronen-Synchrotron DESY)
- V. Libov
(Deutsches Elektronen-Synchrotron DESY)
- P. Niknejadi
(Deutsches Elektronen-Synchrotron DESY)
- Kris Põder
(Deutsches Elektronen-Synchrotron DESY)
- L. Schaper
(Deutsches Elektronen-Synchrotron DESY)
- B. Schmidt
(Deutsches Elektronen-Synchrotron DESY)
- B. Sheeran
(Deutsches Elektronen-Synchrotron DESY
Universität Hamburg)
- G. Tauscher
(Deutsches Elektronen-Synchrotron DESY
Universität Hamburg)
- S. Wesch
(Deutsches Elektronen-Synchrotron DESY)
- J. Zemella
(Deutsches Elektronen-Synchrotron DESY)
- M. Zeng
(Deutsches Elektronen-Synchrotron DESY)
- J. Osterhoff
(Deutsches Elektronen-Synchrotron DESY)
Abstract
Plasma-wakefield accelerators driven by intense particle beams promise to significantly reduce the size of future high-energy facilities. Such applications require particle beams with a well-controlled energy spectrum, which necessitates detailed tailoring of the plasma wakefield. Precise measurements of the effective wakefield structure are therefore essential for optimising the acceleration process. Here we propose and demonstrate such a measurement technique that enables femtosecond-level (15 fs) sampling of longitudinal electric fields of order gigavolts-per-meter (0.8 GV m−1). This method—based on energy collimation of the incoming bunch—made it possible to investigate the effect of beam and plasma parameters on the beam-loaded longitudinally integrated plasma wakefield, showing good agreement with particle-in-cell simulations. These results open the door to high-quality operation of future plasma accelerators through precise control of the acceleration process.
Suggested Citation
S. Schröder & C. A. Lindstrøm & S. Bohlen & G. Boyle & R. D’Arcy & S. Diederichs & M. J. Garland & P. Gonzalez & A. Knetsch & V. Libov & P. Niknejadi & Kris Põder & L. Schaper & B. Schmidt & B. Sheera, 2020.
"High-resolution sampling of beam-driven plasma wakefields,"
Nature Communications, Nature, vol. 11(1), pages 1-6, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19811-9
DOI: 10.1038/s41467-020-19811-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19811-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.