Author
Listed:
- Julius Rojas
(Universitat Autònoma de Barcelona)
- Alberto Quintana
(Georgetown University)
- Aitor Lopeandía
(Universitat Autònoma de Barcelona)
- Joaquín Salguero
(IMN-Instituto de Micro y Nanotecnología (CNM-CSIC), Isaac Newton 8, PTM, 28760 Tres Cantos)
- Beatriz Muñiz
(IMN-Instituto de Micro y Nanotecnología (CNM-CSIC), Isaac Newton 8, PTM, 28760 Tres Cantos)
- Fatima Ibrahim
(Univ. Grenoble Alpes, CEA, CNRS, Spintec)
- Mairbek Chshiev
(Univ. Grenoble Alpes, CEA, CNRS, Spintec
Institut Universitaire de France)
- Aliona Nicolenco
(Universitat Autònoma de Barcelona)
- Maciej O. Liedke
(Institute of Radiation Physics, Helmholtz-Zentrum Dresden–Rossendorf)
- Maik Butterling
(Institute of Radiation Physics, Helmholtz-Zentrum Dresden–Rossendorf)
- Andreas Wagner
(Institute of Radiation Physics, Helmholtz-Zentrum Dresden–Rossendorf)
- Veronica Sireus
(Universitat Autònoma de Barcelona)
- Llibertat Abad
(Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB)
- Christopher J. Jensen
(Georgetown University)
- Kai Liu
(Georgetown University)
- Josep Nogués
(Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra
Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23)
- José L. Costa-Krämer
(IMN-Instituto de Micro y Nanotecnología (CNM-CSIC), Isaac Newton 8, PTM, 28760 Tres Cantos)
- Enric Menéndez
(Universitat Autònoma de Barcelona)
- Jordi Sort
(Universitat Autònoma de Barcelona
Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23)
Abstract
Magneto-ionics, understood as voltage-driven ion transport in magnetic materials, has largely relied on controlled migration of oxygen ions. Here, we demonstrate room-temperature voltage-driven nitrogen transport (i.e., nitrogen magneto-ionics) by electrolyte-gating of a CoN film. Nitrogen magneto-ionics in CoN is compared to oxygen magneto-ionics in Co3O4. Both materials are nanocrystalline (face-centered cubic structure) and show reversible voltage-driven ON-OFF ferromagnetism. In contrast to oxygen, nitrogen transport occurs uniformly creating a plane-wave-like migration front, without assistance of diffusion channels. Remarkably, nitrogen magneto-ionics requires lower threshold voltages and exhibits enhanced rates and cyclability. This is due to the lower activation energy for ion diffusion and the lower electronegativity of nitrogen compared to oxygen. These results may open new avenues in applications such as brain-inspired computing or iontronics in general.
Suggested Citation
Julius Rojas & Alberto Quintana & Aitor Lopeandía & Joaquín Salguero & Beatriz Muñiz & Fatima Ibrahim & Mairbek Chshiev & Aliona Nicolenco & Maciej O. Liedke & Maik Butterling & Andreas Wagner & Veron, 2020.
"Voltage-driven motion of nitrogen ions: a new paradigm for magneto-ionics,"
Nature Communications, Nature, vol. 11(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19758-x
DOI: 10.1038/s41467-020-19758-x
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Zheng Ma & Laura Fuentes-Rodriguez & Zhengwei Tan & Eva Pellicer & Llibertat Abad & Javier Herrero-Martín & Enric Menéndez & Nieves Casañ-Pastor & Jordi Sort, 2023.
"Wireless magneto-ionics: voltage control of magnetism by bipolar electrochemistry,"
Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- M. Usama Hasan & Alexander E. Kossak & Geoffrey S. D. Beach, 2023.
"Large exchange bias enhancement and control of ferromagnetic energy landscape by solid-state hydrogen gating,"
Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Gong Chen & Colin Ophus & Alberto Quintana & Heeyoung Kwon & Changyeon Won & Haifeng Ding & Yizheng Wu & Andreas K. Schmid & Kai Liu, 2022.
"Reversible writing/deleting of magnetic skyrmions through hydrogen adsorption/desorption,"
Nature Communications, Nature, vol. 13(1), pages 1-8, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19758-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.