IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19687-9.html
   My bibliography  Save this article

UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution

Author

Listed:
  • Paul Jannis Zurek

    (University of Cambridge
    Johnson Matthey Plc)

  • Philipp Knyphausen

    (University of Cambridge)

  • Katharina Neufeld

    (University of Cambridge
    Johnson Matthey Plc)

  • Ahir Pushpanath

    (Johnson Matthey Plc)

  • Florian Hollfelder

    (University of Cambridge)

Abstract

The success of protein evolution campaigns is strongly dependent on the sequence context in which mutations are introduced, stemming from pervasive non-additive interactions between a protein’s amino acids (‘intra-gene epistasis’). Our limited understanding of such epistasis hinders the correct prediction of the functional contributions and adaptive potential of mutations. Here we present a straightforward unique molecular identifier (UMI)-linked consensus sequencing workflow (UMIC-seq) that simplifies mapping of evolutionary trajectories based on full-length sequences. Attaching UMIs to gene variants allows accurate consensus generation for closely related genes with nanopore sequencing. We exemplify the utility of this approach by reconstructing the artificial phylogeny emerging in three rounds of directed evolution of an amine dehydrogenase biocatalyst via ultrahigh throughput droplet screening. Uniquely, we are able to identify lineages and their founding variant, as well as non-additive interactions between mutations within a full gene showing sign epistasis. Access to deep and accurate long reads will facilitate prediction of key beneficial mutations and adaptive potential based on in silico analysis of large sequence datasets.

Suggested Citation

  • Paul Jannis Zurek & Philipp Knyphausen & Katharina Neufeld & Ahir Pushpanath & Florian Hollfelder, 2020. "UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19687-9
    DOI: 10.1038/s41467-020-19687-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19687-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19687-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanik Weber & Desirée Böck & Anastasia Ivașcu & Nicolas Mathis & Tanja Rothgangl & Eleonora I. Ioannidi & Alex C. Blaudt & Lisa Tidecks & Máté Vadovics & Hiromi Muramatsu & Andreas Reichmuth & Kim F. , 2024. "Enhancing prime editor activity by directed protein evolution in yeast," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19687-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.