Author
Listed:
- Nathan C. Balukoff
(University of Miami
University of Miami)
- J. J. David Ho
(University of Miami
University of Miami
University of Miami)
- Phaedra R. Theodoridis
(University of Miami
University of Miami)
- Miling Wang
(University of Miami
University of Miami)
- Michael Bokros
(University of Miami
University of Miami)
- Lis M. Llanio
(University of Miami)
- Jonathan R. Krieger
(The Hospital for Sick Children
Bioinformatics Solutions Inc.)
- Jonathan H. Schatz
(University of Miami
University of Miami)
- Stephen Lee
(University of Miami
University of Miami
University of Miami)
Abstract
Translatome reprogramming is a primary determinant of protein levels during stimuli adaptation. This raises the question: what are the translatome remodelers that reprogram protein output to activate biochemical adaptations. Here, we identify a translational pathway that represses metabolism to safeguard genome integrity. A system-wide MATRIX survey identified the ancient eIF5A as a pH-regulated translation factor that responds to fermentation-induced acidosis. TMT-pulse-SILAC analysis identified several pH-dependent proteins, including the mTORC1 suppressor Tsc2 and the longevity regulator Sirt1. Sirt1 operates as a pH-sensor that deacetylates nuclear eIF5A during anaerobiosis, enabling the cytoplasmic export of eIF5A/Tsc2 mRNA complexes for translational engagement. Tsc2 induction inhibits mTORC1 to suppress cellular metabolism and prevent acidosis-induced DNA damage. Depletion of eIF5A or Tsc2 leads to metabolic re-initiation and proliferation, but at the expense of incurring substantial DNA damage. We suggest that eIF5A operates as a translatome remodeler that suppresses metabolism to shield the genome.
Suggested Citation
Nathan C. Balukoff & J. J. David Ho & Phaedra R. Theodoridis & Miling Wang & Michael Bokros & Lis M. Llanio & Jonathan R. Krieger & Jonathan H. Schatz & Stephen Lee, 2020.
"A translational program that suppresses metabolism to shield the genome,"
Nature Communications, Nature, vol. 11(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19602-2
DOI: 10.1038/s41467-020-19602-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19602-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.