IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19599-8.html
   My bibliography  Save this article

Multilayer stabilization for fabricating high-loading single-atom catalysts

Author

Listed:
  • Yazhou Zhou

    (Max Planck Institute for Polymer Research
    Jiangsu University)

  • Xiafang Tao

    (Max Planck Institute for Polymer Research
    Jiangsu University)

  • Guangbo Chen

    (Technische Universität Dresden)

  • Ruihu Lu

    (Wuhan University of Technology)

  • Ding Wang

    (Max Planck Institute for Polymer Research)

  • Ming-Xi Chen

    (University of Science and Technology of China)

  • Enquan Jin

    (Max Planck Institute for Polymer Research)

  • Juan Yang

    (Jiangsu University)

  • Hai-Wei Liang

    (University of Science and Technology of China)

  • Yan Zhao

    (Wuhan University of Technology)

  • Xinliang Feng

    (Technische Universität Dresden)

  • Akimitsu Narita

    (Max Planck Institute for Polymer Research
    Okinawa Institute of Science and Technology Graduate University)

  • Klaus Müllen

    (Max Planck Institute for Polymer Research)

Abstract

Metal single-atom catalysts (M-SACs) have emerged as an attractive concept for promoting heterogeneous reactions, but the synthesis of high-loading M-SACs remains a challenge. Here, we report a multilayer stabilization strategy for constructing M-SACs in nitrogen-, sulfur- and fluorine-co-doped graphitized carbons (M = Fe, Co, Ru, Ir and Pt). Metal precursors are embedded into perfluorotetradecanoic acid multilayers and are further coated with polypyrrole prior to pyrolysis. Aggregation of the metals is thus efficiently inhibited to achieve M-SACs with a high metal loading (~16 wt%). Fe-SAC serves as an efficient oxygen reduction catalyst with half-wave potentials of 0.91 and 0.82 V (versus reversible hydrogen electrode) in alkaline and acid solutions, respectively. Moreover, as an air electrode in zinc–air batteries, Fe-SAC demonstrates a large peak power density of 247.7 mW cm−2 and superior long-term stability. Our versatile method paves an effective way to develop high-loading M-SACs for various applications.

Suggested Citation

  • Yazhou Zhou & Xiafang Tao & Guangbo Chen & Ruihu Lu & Ding Wang & Ming-Xi Chen & Enquan Jin & Juan Yang & Hai-Wei Liang & Yan Zhao & Xinliang Feng & Akimitsu Narita & Klaus Müllen, 2020. "Multilayer stabilization for fabricating high-loading single-atom catalysts," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19599-8
    DOI: 10.1038/s41467-020-19599-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19599-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19599-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenzhen Liu & Helong Li & Xueying Gao & Xuan Guo & Shuizhong Wang & Yunming Fang & Guoyong Song, 2022. "Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Peng Zhang & Hsiao-Chien Chen & Houyu Zhu & Kuo Chen & Tuya Li & Yilin Zhao & Jiaye Li & Ruanbo Hu & Siying Huang & Wei Zhu & Yunqi Liu & Yuan Pan, 2024. "Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Weiwei Fu & Jin Wan & Huijuan Zhang & Jian Li & Weigen Chen & Yuke Li & Zaiping Guo & Yu Wang, 2022. "Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Leong, Kee Wah & Wang, Yifei & Ni, Meng & Pan, Wending & Luo, Shijing & Leung, Dennis Y.C., 2022. "Rechargeable Zn-air batteries: Recent trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Shuhu Yin & Hongyuan Yi & Mengli Liu & Jian Yang & Shuangli Yang & Bin-Wei Zhang & Long Chen & Xiaoyang Cheng & Huan Huang & Rui Huang & Yanxia Jiang & Honggang Liao & Shigang Sun, 2024. "An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19599-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.