IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19594-z.html
   My bibliography  Save this article

Machine learning with physicochemical relationships: solubility prediction in organic solvents and water

Author

Listed:
  • Samuel Boobier

    (University of Leeds, Woodhouse Lane)

  • David R. J. Hose

    (Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca)

  • A. John Blacker

    (University of Leeds, Woodhouse Lane)

  • Bao N. Nguyen

    (University of Leeds, Woodhouse Lane)

Abstract

Solubility prediction remains a critical challenge in drug development, synthetic route and chemical process design, extraction and crystallisation. Here we report a successful approach to solubility prediction in organic solvents and water using a combination of machine learning (ANN, SVM, RF, ExtraTrees, Bagging and GP) and computational chemistry. Rational interpretation of dissolution process into a numerical problem led to a small set of selected descriptors and subsequent predictions which are independent of the applied machine learning method. These models gave significantly more accurate predictions compared to benchmarked open-access and commercial tools, achieving accuracy close to the expected level of noise in training data (LogS ± 0.7). Finally, they reproduced physicochemical relationship between solubility and molecular properties in different solvents, which led to rational approaches to improve the accuracy of each models.

Suggested Citation

  • Samuel Boobier & David R. J. Hose & A. John Blacker & Bao N. Nguyen, 2020. "Machine learning with physicochemical relationships: solubility prediction in organic solvents and water," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19594-z
    DOI: 10.1038/s41467-020-19594-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19594-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19594-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juran Noh & Hieu A. Doan & Heather Job & Lily A. Robertson & Lu Zhang & Rajeev S. Assary & Karl Mueller & Vijayakumar Murugesan & Yangang Liang, 2024. "An integrated high-throughput robotic platform and active learning approach for accelerated discovery of optimal electrolyte formulations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Yuan Gao & Yueling Guo & Nurul Atiqah Romli & Mohd Shareduwan Mohd Kasihmuddin & Weixiang Chen & Mohd. Asyraf Mansor & Ju Chen, 2022. "GRAN3SAT: Creating Flexible Higher-Order Logic Satisfiability in the Discrete Hopfield Neural Network," Mathematics, MDPI, vol. 10(11), pages 1-28, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19594-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.