IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19570-7.html
   My bibliography  Save this article

PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts

Author

Listed:
  • Ann Liza Piberger

    (College of Medical and Dental Sciences, University of Birmingham)

  • Akhil Bowry

    (College of Medical and Dental Sciences, University of Birmingham)

  • Richard D. W. Kelly

    (College of Medical and Dental Sciences, University of Birmingham)

  • Alexandra K. Walker

    (College of Medical and Dental Sciences, University of Birmingham)

  • Daniel González-Acosta

    (Spanish National Cancer Research Centre)

  • Laura J. Bailey

    (University of Sussex, Falmer)

  • Aidan J. Doherty

    (University of Sussex, Falmer)

  • Juan Méndez

    (Spanish National Cancer Research Centre)

  • Joanna R. Morris

    (College of Medical and Dental Sciences, University of Birmingham)

  • Helen E. Bryant

    (University of Sheffield)

  • Eva Petermann

    (College of Medical and Dental Sciences, University of Birmingham)

Abstract

Stalled replication forks can be restarted and repaired by RAD51-mediated homologous recombination (HR), but HR can also perform post-replicative repair after bypass of the obstacle. Bulky DNA adducts are important replication-blocking lesions, but it is unknown whether they activate HR at stalled forks or behind ongoing forks. Using mainly BPDE-DNA adducts as model lesions, we show that HR induced by bulky adducts in mammalian cells predominantly occurs at post-replicative gaps formed by the DNA/RNA primase PrimPol. RAD51 recruitment under these conditions does not result from fork stalling, but rather occurs at gaps formed by PrimPol re-priming and resection by MRE11 and EXO1. In contrast, RAD51 loading at double-strand breaks does not require PrimPol. At bulky adducts, PrimPol promotes sister chromatid exchange and genetic recombination. Our data support that HR at bulky adducts in mammalian cells involves post-replicative gap repair and define a role for PrimPol in HR-mediated DNA damage tolerance.

Suggested Citation

  • Ann Liza Piberger & Akhil Bowry & Richard D. W. Kelly & Alexandra K. Walker & Daniel González-Acosta & Laura J. Bailey & Aidan J. Doherty & Juan Méndez & Joanna R. Morris & Helen E. Bryant & Eva Peter, 2020. "PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19570-7
    DOI: 10.1038/s41467-020-19570-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19570-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19570-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jude B. Khatib & Ashna Dhoonmoon & George-Lucian Moldovan & Claudia M. Nicolae, 2024. "PARP10 promotes the repair of nascent strand DNA gaps through RAD18 mediated translesion synthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Taichi Igarashi & Marianne Mazevet & Takaaki Yasuhara & Kimiyoshi Yano & Akifumi Mochizuki & Makoto Nishino & Tatsuya Yoshida & Yukihiro Yoshida & Nobuhiko Takamatsu & Akihide Yoshimi & Kouya Shiraish, 2023. "An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Zuzana Machacova & Katarina Chroma & David Lukac & Iva Protivankova & Pavel Moudry, 2024. "DNA polymerase α-primase facilitates PARP inhibitor-induced fork acceleration and protects BRCA1-deficient cells against ssDNA gaps," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Tanay Thakar & Ashna Dhoonmoon & Joshua Straka & Emily M. Schleicher & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Maria Dilia Palumbieri & Chiara Merigliano & Daniel González-Acosta & Danina Kuster & Jana Krietsch & Henriette Stoy & Thomas Känel & Svenja Ulferts & Bettina Welter & Joël Frey & Cyril Doerdelmann & , 2023. "Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Domagoj Vugic & Isaac Dumoulin & Charlotte Martin & Anna Minello & Lucia Alvaro-Aranda & Jesus Gomez-Escudero & Rady Chaaban & Rana Lebdy & Catharina Nicolai & Virginie Boucherit & Cyril Ribeyre & Ang, 2023. "Replication gap suppression depends on the double-strand DNA binding activity of BRCA2," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19570-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.