IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19524-z.html
   My bibliography  Save this article

Bayesian learning of chemisorption for bridging the complexity of electronic descriptors

Author

Listed:
  • Siwen Wang

    (Virginia Polytechnic Institute and State University)

  • Hemanth Somarajan Pillai

    (Virginia Polytechnic Institute and State University)

  • Hongliang Xin

    (Virginia Polytechnic Institute and State University)

Abstract

Building upon the d-band reactivity theory in surface chemistry and catalysis, we develop a Bayesian learning approach to probing chemisorption processes at atomically tailored metal sites. With representative species, e.g., *O and *OH, Bayesian models trained with ab initio adsorption properties of transition metals predict site reactivity at a diverse range of intermetallics and near-surface alloys while naturally providing uncertainty quantification from posterior sampling. More importantly, this conceptual framework sheds light on the orbitalwise nature of chemical bonding at adsorption sites with d-states characteristics ranging from bulk-like semi-elliptic bands to free-atom-like discrete energy levels, bridging the complexity of electronic descriptors for the prediction of novel catalytic materials.

Suggested Citation

  • Siwen Wang & Hemanth Somarajan Pillai & Hongliang Xin, 2020. "Bayesian learning of chemisorption for bridging the complexity of electronic descriptors," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19524-z
    DOI: 10.1038/s41467-020-19524-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19524-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19524-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Gao & Hemanth Somarajan Pillai & Yang Huang & Shikai Liu & Qingmin Mu & Xue Han & Zihao Yan & Hua Zhou & Qian He & Hongliang Xin & Huiyuan Zhu, 2022. "Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Chao Liang & Yilimiranmu Rouzhahong & Caiyuan Ye & Chong Li & Biao Wang & Huashan Li, 2023. "Material symmetry recognition and property prediction accomplished by crystal capsule representation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Hemanth Somarajan Pillai & Yi Li & Shih-Han Wang & Noushin Omidvar & Qingmin Mu & Luke E. K. Achenie & Frank Abild-Pedersen & Juan Yang & Gang Wu & Hongliang Xin, 2023. "Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19524-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.