IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19517-y.html
   My bibliography  Save this article

Direct conversion of methane to formaldehyde and CO on B2O3 catalysts

Author

Listed:
  • Jinshu Tian

    (State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University)

  • Jiangqiao Tan

    (State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University)

  • Zhaoxia Zhang

    (State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University)

  • Peijie Han

    (State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University)

  • Min Yin

    (State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University)

  • Shaolong Wan

    (State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University)

  • Jingdong Lin

    (State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University)

  • Shuai Wang

    (State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University)

  • Yong Wang

    (Washington State University)

Abstract

Direct oxidation of methane to value-added C1 chemicals (e.g. HCHO and CO) provides a promising way to utilize natural gas sources under relatively mild conditions. Such conversions remain, however, a key selectivity challenge, resulting from the facile formation of undesired fully-oxidized CO2. Here we show that B2O3-based catalysts are selective in the direct conversion of methane to HCHO and CO (~94% selectivity with a HCHO/CO ratio of ~1 at 6% conversion) and highly stable (over 100 hour time-on-stream operation) conducted in a fixed-bed reactor (550 °C, 100 kPa, space velocity 4650 mL gcat−1 h−1). Combined catalyst characterization, kinetic studies, and isotopic labeling experiments unveil that molecular O2 bonded to tri-coordinated BO3 centers on B2O3 surfaces acts as a judicious oxidant for methane activation with mitigated CO2 formation, even at high O2/CH4 ratios of the feed. These findings shed light on the great potential of designing innovative catalytic processes for the direct conversion of alkanes to fuels/chemicals.

Suggested Citation

  • Jinshu Tian & Jiangqiao Tan & Zhaoxia Zhang & Peijie Han & Min Yin & Shaolong Wan & Jingdong Lin & Shuai Wang & Yong Wang, 2020. "Direct conversion of methane to formaldehyde and CO on B2O3 catalysts," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19517-y
    DOI: 10.1038/s41467-020-19517-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19517-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19517-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiyi Li & Chao Wang & Jianlong Yang & Youxun Xu & Yi Yang & Jiaguo Yu & Juan J. Delgado & Natalia Martsinovich & Xiao Sun & Xu-Sheng Zheng & Weixin Huang & Junwang Tang, 2023. "PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Lei Luo & Lei Fu & Huifen Liu & Youxun Xu & Jialiang Xing & Chun-Ran Chang & Dong-Yuan Yang & Junwang Tang, 2022. "Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Lei Luo & Xiaoyu Han & Keran Wang & Youxun Xu & Lunqiao Xiong & Jiani Ma & Zhengxiao Guo & Junwang Tang, 2023. "Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Zhankai Liu & Ziyi Liu & Jie Fan & Wen-Duo Lu & Fan Wu & Bin Gao & Jian Sheng & Bin Qiu & Dongqi Wang & An-Hui Lu, 2023. "Auto-accelerated dehydrogenation of alkane assisted by in-situ formed olefins over boron nitride under aerobic conditions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19517-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.