IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19469-3.html
   My bibliography  Save this article

Adding salt to expand voltage window of humid ionic liquids

Author

Listed:
  • Ming Chen

    (Huazhong University of Science and Technology (HUST))

  • Jiedu Wu

    (Xiamen University)

  • Ting Ye

    (Huazhong University of Science and Technology (HUST))

  • Jinyu Ye

    (Xiamen University)

  • Chang Zhao

    (Huazhong University of Science and Technology (HUST))

  • Sheng Bi

    (Huazhong University of Science and Technology (HUST))

  • Jiawei Yan

    (Xiamen University)

  • Bingwei Mao

    (Xiamen University)

  • Guang Feng

    (Huazhong University of Science and Technology (HUST))

Abstract

Humid hydrophobic ionic liquids—widely used as electrolytes—have narrowed electrochemical windows due to the involvement of water, absorbed on the electrode surface, in electrolysis. In this work, we performed molecular dynamics simulations to explore effects of adding Li salt in humid ionic liquids on the water adsorbed on the electrode surface. Results reveal that most of the water molecules are pushed away from both cathode and anode, by adding salt. The water remaining on the electrode is almost bound with Li+, having significantly lowered activity. The Li+-bonding and re-arrangement of the surface-adsorbed water both facilitate the inhibition of water electrolysis, and thus prevent the reduction of electrochemical windows of humid hydrophobic ionic liquids. This finding is testified by cyclic voltammetry measurements where salt-in-humid ionic liquids exhibit enlarged electrochemical windows. Our work provides the underlying mechanism and a simple but practical approach for protection of humid ionic liquids from electrochemical performance degradation.

Suggested Citation

  • Ming Chen & Jiedu Wu & Ting Ye & Jinyu Ye & Chang Zhao & Sheng Bi & Jiawei Yan & Bingwei Mao & Guang Feng, 2020. "Adding salt to expand voltage window of humid ionic liquids," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19469-3
    DOI: 10.1038/s41467-020-19469-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19469-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19469-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weili Zhang & Yang Lu & Lei Wan & Pan Zhou & Yingchun Xia & Shuaishuai Yan & Xiaoxia Chen & Hangyu Zhou & Hao Dong & Kai Liu, 2022. "Engineering a passivating electric double layer for high performance lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Chao-Yu Li & Ming Chen & Shuai Liu & Xinyao Lu & Jinhui Meng & Jiawei Yan & Héctor D. Abruña & Guang Feng & Tianquan Lian, 2022. "Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19469-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.