IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19309-4.html
   My bibliography  Save this article

Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts

Author

Listed:
  • Qihao Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wenwen Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shun Gong

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Guokui Zheng

    (Chinese Academy of Sciences
    Zhejiang University)

  • Ziqi Tian

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yujie Wen

    (Nanjing University)

  • Luming Peng

    (Nanjing University)

  • Linjuan Zhang

    (Chinese Academy of Sciences)

  • Zhiyi Lu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Liang Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Elucidating the structure-property relationship is crucial for the design of advanced electrocatalysts towards the production of hydrogen peroxide (H2O2). In this work, we theoretically and experimentally discovered that atomically dispersed Lewis acid sites (octahedral M–O species, M = aluminum (Al), gallium (Ga)) regulate the electronic structure of adjacent carbon catalyst sites. Density functional theory calculation predicts that the octahedral M–O with strong Lewis acidity regulates the electronic distribution of the adjacent carbon site and thus optimizes the adsorption and desorption strength of reaction intermediate (*OOH). Experimentally, the optimal catalyst (oxygen-rich carbon with atomically dispersed Al, denoted as O-C(Al)) with the strongest Lewis acidity exhibited excellent onset potential (0.822 and 0.526 V versus reversible hydrogen electrode at 0.1 mA cm−2 H2O2 current in alkaline and neutral media, respectively) and high H2O2 selectivity over a wide voltage range. This study provides a highly efficient and low-cost electrocatalyst for electrochemical H2O2 production.

Suggested Citation

  • Qihao Yang & Wenwen Xu & Shun Gong & Guokui Zheng & Ziqi Tian & Yujie Wen & Luming Peng & Linjuan Zhang & Zhiyi Lu & Liang Chen, 2020. "Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19309-4
    DOI: 10.1038/s41467-020-19309-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19309-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19309-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Qilong Wu & Haiyuan Zou & Xin Mao & Jinghan He & Yanmei Shi & Shuangming Chen & Xuecheng Yan & Liyun Wu & Chengguang Lang & Bin Zhang & Li Song & Xin Wang & Aijun Du & Qin Li & Yi Jia & Jun Chen & Xia, 2023. "Unveiling the dynamic active site of defective carbon-based electrocatalysts for hydrogen peroxide production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Xiao Zhou & Yuan Min & Changming Zhao & Cai Chen & Ming-Kun Ke & Shi-Lin Xu & Jie-Jie Chen & Yuen Wu & Han-Qing Yu, 2024. "Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Jiannan Du & Guokang Han & Wei Zhang & Lingfeng Li & Yuqi Yan & Yaoxuan Shi & Xue Zhang & Lin Geng & Zhijiang Wang & Yueping Xiong & Geping Yin & Chunyu Du, 2023. "CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19309-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.