IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19242-6.html
   My bibliography  Save this article

Integrative transcriptome and chromatin landscape analysis reveals distinct epigenetic regulations in human memory B cells

Author

Listed:
  • Justin B. Moroney

    (Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center)

  • Anusha Vasudev

    (Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center)

  • Alexander Pertsemlidis

    (Greehey Children’s Cancer Research Institute, University of Texas Long School of Medicine, UT Health Science Center)

  • Hong Zan

    (Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center)

  • Paolo Casali

    (Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center)

Abstract

Memory B cells (MBCs) are long-lived and produce high-affinity, generally, class-switched antibodies. Here, we use a multiparameter approach involving CD27 to segregate naïve B cells (NBC), IgD+ unswitched (unsw)MBCs and IgG+ or IgA+ class-switched (sw)MBCs from humans of different age, sex and race. Conserved antibody variable gene expression indicates that MBCs emerge through unbiased selection from NBCs. Integrative analyses of mRNAs, miRNAs, lncRNAs, chromatin accessibility and cis-regulatory elements uncover a core mRNA-ncRNA transcriptional signature shared by IgG+ and IgA+ swMBCs and distinct from NBCs, while unswMBCs display a transitional transcriptome. Some swMBC transcriptional signature loci are accessible but not expressed in NBCs. Profiling miRNAs reveals downregulated MIR181, and concomitantly upregulated MIR181 target genes such as RASSF6, TOX, TRERF1, TRPV3 and RORα, in swMBCs. Finally, lncRNAs differentially expressed in swMBCs cluster proximal to the IgH chain locus on chromosome 14. Our findings thus provide new insights into MBC transcriptional programs and epigenetic regulation, opening new investigative avenues on these critical cell elements in human health and disease.

Suggested Citation

  • Justin B. Moroney & Anusha Vasudev & Alexander Pertsemlidis & Hong Zan & Paolo Casali, 2020. "Integrative transcriptome and chromatin landscape analysis reveals distinct epigenetic regulations in human memory B cells," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19242-6
    DOI: 10.1038/s41467-020-19242-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19242-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19242-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kathryn Weinand & Saori Sakaue & Aparna Nathan & Anna Helena Jonsson & Fan Zhang & Gerald F. M. Watts & Majd Al Suqri & Zhu Zhu & Deepak A. Rao & Jennifer H. Anolik & Michael B. Brenner & Laura T. Don, 2024. "The chromatin landscape of pathogenic transcriptional cell states in rheumatoid arthritis," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    2. Yijiang Xu & Hang Zhou & Ginell Post & Hong Zan & Paolo Casali, 2022. "Rad52 mediates class-switch DNA recombination to IgD," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19242-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.