Author
Listed:
- Marion Mathelié-Guinlet
(UCLouvain)
- Felipe Viela
(UCLouvain)
- Giampiero Pietrocola
(Unit of Biochemistry, University of Pavia)
- Pietro Speziale
(Unit of Biochemistry, University of Pavia)
- David Alsteens
(UCLouvain
Walloon Excellence in Life sciences and Biotechnology (WELBIO))
- Yves F. Dufrêne
(UCLouvain
Walloon Excellence in Life sciences and Biotechnology (WELBIO))
Abstract
Physical forces have profound effects on cellular behavior, physiology, and disease. Perhaps the most intruiguing and fascinating example is the formation of catch-bonds that strengthen cellular adhesion under shear stresses. Today mannose-binding by the Escherichia coli FimH adhesin remains one of the rare microbial catch-bond thoroughly characterized at the molecular level. Here we provide a quantitative demonstration of a catch-bond in living Gram-positive pathogens using force-clamp spectroscopy. We show that the dock, lock, and latch interaction between staphylococcal surface protein SpsD and fibrinogen is strong, and exhibits an unusual catch-slip transition. The bond lifetime first grows with force, but ultimately decreases to behave as a slip bond beyond a critical force (~1 nN) that is orders of magnitude higher than for previously investigated complexes. This catch-bond, never reported for a staphylococcal adhesin, provides the pathogen with a mechanism to tightly control its adhesive function during colonization and infection.
Suggested Citation
Marion Mathelié-Guinlet & Felipe Viela & Giampiero Pietrocola & Pietro Speziale & David Alsteens & Yves F. Dufrêne, 2020.
"Force-clamp spectroscopy identifies a catch bond mechanism in a Gram-positive pathogen,"
Nature Communications, Nature, vol. 11(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19216-8
DOI: 10.1038/s41467-020-19216-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19216-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.