IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19210-0.html
   My bibliography  Save this article

A universal method for depositing patterned materials in situ

Author

Listed:
  • Yifan Chen

    (The Chinese University of Hong Kong, Shatin)

  • Siu Fai Hung

    (The Chinese University of Hong Kong, Shatin)

  • Wing Ki Lo

    (The Chinese University of Hong Kong, Shatin)

  • Yang Chen

    (The Chinese University of Hong Kong, Shatin)

  • Yang Shen

    (The Chinese University of Hong Kong, Shatin)

  • Kim Kafenda

    (The Chinese University of Hong Kong, Shatin)

  • Jia Su

    (South University of Science and Technology of China
    Shenzhen 34 Technology Co., Ltd)

  • Kangwei Xia

    (The Chinese University of Hong Kong, Shatin)

  • Sen Yang

    (The Chinese University of Hong Kong, Shatin
    The Chinese University of Hong Kong)

Abstract

Current techniques of patterned material deposition require separate steps for patterning and material deposition. The complexity and harsh working conditions post serious limitations for fabrication. Here, we introduce a single-step and easy-to-adapt method that can deposit materials in-situ. Its methodology is based on the semiconductor nanoparticle assisted photon-induced chemical reduction and optical trapping. This universal mechanism can be used for depositing a large selection of materials including metals, insulators and magnets, with quality on par with current technologies. Patterning with several materials together with optical-diffraction-limited resolution and accuracy can be achieved from macroscopic to microscopic scale. Furthermore, the setup is naturally compatible with optical microscopy based measurements, thus sample characterisation and material deposition can be realised in-situ. Various devices fabricated with this method in 2D or 3D show it is ready for deployment in practical applications. This method will provide a distinct tool in material technology.

Suggested Citation

  • Yifan Chen & Siu Fai Hung & Wing Ki Lo & Yang Chen & Yang Shen & Kim Kafenda & Jia Su & Kangwei Xia & Sen Yang, 2020. "A universal method for depositing patterned materials in situ," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19210-0
    DOI: 10.1038/s41467-020-19210-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19210-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19210-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Yang & Hongrong Hu & Alexander Scholz & Florian Feist & Gabriel Cadilha Marques & Steven Kraus & Niklas Maximilian Bojanowski & Eva Blasco & Christopher Barner-Kowollik & Jasmin Aghassi-Hagmann , 2023. "Laser printed microelectronics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Seongheon Baek & Hyeong Woo Ban & Sanggyun Jeong & Seung Hwae Heo & Da Hwi Gu & Wooyong Choi & Seungjun Choo & Yae Eun Park & Jisu Yoo & Moon Kee Choi & Jiseok Lee & Jae Sung Son, 2022. "Generalised optical printing of photocurable metal chalcogenides," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19210-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.