IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19170-5.html
   My bibliography  Save this article

The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s

Author

Listed:
  • Hale Tunbak

    (Queen Mary University of London)

  • Rocio Enriquez-Gasca

    (Queen Mary University of London)

  • Christopher H. C. Tie

    (University College London)

  • Poppy A. Gould

    (Queen Mary University of London)

  • Petra Mlcochova

    (University of Cambridge)

  • Ravindra K. Gupta

    (University of Cambridge)

  • Liane Fernandes

    (Queen Mary University of London)

  • James Holt

    (Queen Mary University of London)

  • Annemarthe G. Veen

    (The Francis Crick Institute
    Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion)

  • Evangelos Giampazolias

    (The Francis Crick Institute)

  • Kathleen H. Burns

    (John Hopkins University School of Medicine)

  • Pierre V. Maillard

    (Queen Mary University of London)

  • Helen M. Rowe

    (Queen Mary University of London)

Abstract

The Human Silencing Hub (HUSH) complex is necessary for epigenetic repression of LINE-1 elements. We show that HUSH-depletion in human cell lines and primary fibroblasts leads to induction of interferon-stimulated genes (ISGs) through JAK/STAT signaling. This effect is mainly attributed to MDA5 and RIG-I sensing of double-stranded RNAs (dsRNAs). This coincides with upregulation of primate-conserved LINE-1s, as well as increased expression of full-length hominid-specific LINE-1s that produce bidirectional RNAs, which may form dsRNA. Notably, LTRs nearby ISGs are derepressed likely rendering these genes more responsive to interferon. LINE-1 shRNAs can abrogate the HUSH-dependent response, while overexpression of an engineered LINE-1 construct activates interferon signaling. Finally, we show that the HUSH component, MPP8 is frequently downregulated in diverse cancers and that its depletion leads to DNA damage. These results suggest that LINE-1s may drive physiological or autoinflammatory responses through dsRNA sensing and gene-regulatory roles and are controlled by the HUSH complex.

Suggested Citation

  • Hale Tunbak & Rocio Enriquez-Gasca & Christopher H. C. Tie & Poppy A. Gould & Petra Mlcochova & Ravindra K. Gupta & Liane Fernandes & James Holt & Annemarthe G. Veen & Evangelos Giampazolias & Kathlee, 2020. "The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19170-5
    DOI: 10.1038/s41467-020-19170-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19170-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19170-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Luqman-Fatah & Yuzo Watanabe & Kazuko Uno & Fuyuki Ishikawa & John V. Moran & Tomoichiro Miyoshi, 2023. "The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction," Nature Communications, Nature, vol. 14(1), pages 1-26, December.
    2. Qin Yu & Alba Herrero del Valle & Rahul Singh & Yorgo Modis, 2021. "MDA5 disease variant M854K prevents ATP-dependent structural discrimination of viral and cellular RNA," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Bert I. Crawford & Mary Jo Talley & Joshua Russman & James Riddle & Sabrina Torres & Troy Williams & Michelle S. Longworth, 2024. "Condensin-mediated restriction of retrotransposable elements facilitates brain development in Drosophila melanogaster," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19170-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.